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An optically pumped magnetometer (OPM) is a new generation of magnetoencephalography (MEG) devices that
is small, light, and works at room temperature. Due to these characteristics, OPMs enable flexible and wearable
MEG systems. On the other hand, if we have a limited number of OPM sensors, we need to carefully design their
sensor arrays depending on our purposes and regions of interests (ROIs). In this study, we propose a method that
designs OPM sensor arrays for accurately estimating the cortical currents at the ROIs. Based on the resolution
matrix of minimum norm estimate (MNE), our method sequentially determines the position of each sensor to
optimize its inverse filter pointing to the ROIs and suppressing the signal leakage from the other areas. We call
this method the Sensor array Optimization based on Resolution Matrix (SORM). We conducted simple and realistic
simulation tests to evaluate its characteristics and efficacy for real OPM-MEG data. SORM designed the sensor
arrays so that their leadfield matrices had high effective ranks as well as high sensitivities to ROIs. Although
SORM is based on MNE, the sensor arrays designed by SORM were effective not only when we estimated the
cortical currents by MNE but also when we did so by other methods. With real OPM-MEG data we confirmed its
validity for real data. These analyses suggest that SORM is especially useful when we want to accurately estimate
ROIs’ activities with a limited number of OPM sensors, such as brain-machine interfaces and diagnosing brain

diseases.

1. Introduction

Our brain activities produce very weak magnetic fields outside of
our heads. By measuring these magnetic fields, we can examine brain
activities with excellent temporal resolution on the millisecond order.
Conventionally, the magnetic fields produced by our brains have been
measured by magnetoencephalography (MEG) systems equipped with
Superconducting QUantum Interference Devices (SQUIDs), such as the
Elekta Neuromag Vectorview 306 system (Helsinki). These systems are
large, placing more than 200 sensors over the whole head, and liquid
helium is housed around the sensors to cool them.

Recently, a new device was introduced (Shah and Wakai, 2013), an
optically pumped magnetometer (OPM), which has attracted great in-
terest from the MEG community (Boto et al., 2016; 2017; Brookes et al.,
2022; llmoniemi and Sarvas, 2019; Tierney et al., 2019). An OPM sen-
sor is small, light, and works at room temperature without cryogenic
cooling. Due to these characteristics, OPMs enable flexible and wear-
able MEG systems, which allow us to measure MEGs under such severe
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situations that include the brain activities of children and during move-
ments (Seymour et al., 2021). Furthermore, we can put OPM sensors on
the head, yielding high sensitivity to brain activities (Boto et al., 2017;
livanainen et al., 2017).

On the other hand, because this technology is still in its early stage,
well-established OPM-MEG measurement systems are currently unavail-
able. After buying OPM sensors, we ourselves need to construct an MEG
measurement system, such as a coil system for nulling the environmen-
tal magnetic field (Holmes et al., 2018; 2019; livanainen et al., 2019)
and a cap or helmet to hold the sensors (Hill et al., 2020). If we only
have a few OPM sensors (a common case for many OPM users), we must
design the sensor array carefully depending on our purposes and the re-
gions of interests (ROIs). For example, if we want to extract the brain
activity at the motor cortex with five OPM sensors for a brain-computer
interface (BCI), the sensors should be placed around the motor cortex.
However, the accuracy of this expectation is unclear. Even if it is true,
we do not know at which positions the sensors should be put.
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Recently, Beltrachini et al. (2021) proposed a method to design OPM
sensor arrays for minimizing source localization error. It sequentially de-
termines the sensor positions to minimize the Cramér-Rao bound of the
source localization error. However, because their scheme was developed
for dipole methods (Muravchik et al., 2000), which approximate brain
activities by a small number of current dipoles (Aine et al., 2000; Hari,
1991; Mosher et al., 1992), it cannot be used for distributed source meth-
ods, such as Minimum Norm Estimates (MNE) (Hamézldinen et al., 1993;
Hamaéldinen and Ilmoniemi, 1994; Ilmoniemi and Sarvas, 2019) or a Lin-
early Constrained Minimum Variance (LCMV) beamformer (Ilmoniemi
and Sarvas, 2019; Van Veen et al., 1997). Distributed source methods
assume distributed currents in the brain and are widely used in the MEG
literature.

In this study, we propose a method that designs OPM sensor arrays
for accurately estimating distributed currents. From a set of possible
sensor positions, our method selects some positions so that the esti-
mated cortical currents have accurate time-series at the ROIs. To achieve
this aim, we focus on the MNE’s resolution matrix (Hauk et al., 2022;
Grave de Peralta-Menendez and Gonzalez-Andino, 1998), which rep-
resents the relationship between the true and estimated currents. The
larger the diagonal elements in the resolution matrix are, the more ac-
curate the time-series of the estimated current becomes. Therefore, we
derived a recurrence formula of the resolution matrix and based on it,
sequentially selected sensor positions so that the resolution matrix has
large diagonal elements at the ROIs. We call this method a Sensor array
Optimization based on Resolution Matrix (SORM).

We conducted simple and realistic simulation tests to evaluate its
characteristics and efficacy for real OPM-MEG data. SORM selected sen-
sor positions so that their leadfield matrices had high effective ranks
as well as high sensitivities to ROIs. The sensor arrays designed by
SORM were effective not only when we estimated the cortical currents
by MNE but also when we did so by other methods: an LCMV beam-
former (Van Veen et al., 1997) and the hierarchical Variational Bayesian
method (hVB) (Sato et al., 2004; Yoshioka et al., 2008). Furthermore,
we applied SORM to real OPM-MEG data to confirm its validity for real
data. Based on these analyses, we believe that SORM is especially useful
for accurately estimating ROIs’ activities with a limited number of OPM
sensors, such as BCI and the diagnosis of brain diseases.

2. Designing sensor arrays based on resolution matrix
In this section, we propose our SORM algorithm.
2.1. Assumption and purpose

We assume that we know the ROIs and that the possible OPM sensor
locations have already been determined. Hereafter, for brevity, the set of
possible OPM sensor locations is called the candidates. Given these ROIs
and candidates, SORM selects the sensor positions so that the estimated
cortical currents at the ROIs have accurate time-series.

2.2. Basic strategy

For this purpose, we focus on the resolution matrix (Hauk et al.,
2022; Grave de Peralta-Menendez and Gonzalez-Andino, 1998) of MNE
(Hamaéldinen et al., 1993; Hamaéldinen and Ilmoniemi, 1994). We ex-
plain this by starting from the basics of cortical current estimation.

In distributed source methods, MEG data are expressed as

B=GJ+E, M

where B is the M x T MEG data matrix, M is the number of channels,
T is the number of time points, G is the M x N leadfield matrix, N is
the number of current dipoles (vertices), J is the N x T cortical current
matrix, and E is the M x T noise matrix.

Cortical current J is estimated by

J=LB, 2)
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A Assumed sensor arrays
e

Fig. 1. Relationship between sensor array and signal leakage. (A) Assumed sen-
sor arrays. Red circles indicate sensor positions. (B) ROI (a vertex in left so-
matosensory cortex). (C) Signal leakage into ROI from other areas. For each
sensor array in A, we calculated MNE’s resolution matrix and showed its ab-
solute row vector values at ROL Values over 0.3 of their maximum value are
shown.

where L is an N X M matrix, called an inverse filter. In the case of MNE,
L is calculated by

L=[G"G+AI"'G", 3)

where 4 is a regularization constant and I is the N x N identity matrix.
By substituting Eq. (1) for B in Eq. (2), we obtain

J=LGJ+LE. @)
By putting
R=LG )

and taking the expectation of E, Eq. (4) is rewritten as
E[J] = RJ.

R is an N X N matrix, called a resolution matrix (Hauk et al., 2022;
Grave de Peralta-Menendez and Gonzalez-Andino, 1998), which repre-
sents the relationship between the true and estimated currents.

If R is an identity matrix, the current is perfectly estimated. How-
ever, R is strongly degenerate because its rank is M << N, and therefore
it cannot be an identity matrix with rank N. The non-diagonal elements
of R represent the signal leakage that occurs when estimating the cur-
rent (Brookes et al., 2012; Colclough et al., 2015; Palva et al., 2018;
Sato et al., 2018). Specifically, R(a, b), where b # a, represents the sig-
nal leakage from vertex b to a. Therefore, to accurately estimate the
current at vertex a, R(a, a) needs to be larger than R(a, b).

In the case of MNE, the resolution matrix is calculated from
Egs. (3) and (5) by

R =[G"G +1"'G"G. 6)

This is a symmetric matrix; that is, the signal leakage from vertex b to
a and from a to b is identical. Because this equation does not include
MEG data, we do not need to conduct MEG experiments to calculate the
resolution matrices of MNE.

Figure 1 shows sample resolution matrices. We assumed two sensor
arrays (Fig. 1A, red circles). For each, we calculated the resolution ma-
trix of MNE by Eq. (6) (see Section 3 for detailed descriptions). We set
ROI to a vertex in the left somatosensory cortex (Fig. 1B). To examine
the signal leakage into the ROI from other areas, we show the absolute
values of the row vector at the ROI in the resolution matrix (Fig. 1C):
a so-called cross-talk function (Hauk et al., 2022). The signal leakage
largely changed depending on the sensor arrays.

These considerations and results lead to SORM'’s basic strategy: de-
termine the sensor positions so that the resolution matrix of MNE has
larger diagonal elements than the non-diagonal elements at the ROIs.
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2.3. Procedure to select sensor positions

To identify the relationship between the sensor positions and MNE’s
resolution matrix, we derived how the resolution matrix changes by
adding a new sensor. Here we assume that each sensor measures a mag-
netic field along a single axis; each sensor has a single channel.

Suppose that we already set some sensors whose leadfield and res-
olution matrices of MNE are G and R. By adding a new sensor, R is
changed to

1Ty -1
R+=R+—AC hfllCT, (7)
1+hC™"h
where C = GTG + AI and h is a new row of the leadfield matrix cor-
responding to the new sensor [see Appendix A for the derivation of
Eq. (7)]. Hereafter, a row of a leadfield matrix is called a sensitivity vec-
tor because it represents a sensor’s sensitivity to each vertex. By defining
a gain vector

x=C AT = [GTG + A", (8)

Eq. (7) is rewritten as

AxxT

Re= R+ v
Because 1/(1 + xTCx) is scalar, we focus on xx', which is an N x N
matrix. The power of its diagonal elements at ROIs can be calculated
by x(n)Tx(n), where n = [n,, -+, n,] represents the elements correspond-
ing to ROIs. If x(n)Tx(n) is large, the diagonal elements at ROIs in R "
increase.

Based on these results, we propose the following procedure that se-
lects the sensor positions from their candidates (Algorithm 1):

Algorithm 1 Select K sensor positions.

1: Set 4 to a fixed value

2: Initialize GTG by GTG = zeros(N, N)

3 fork=1:K

4 Calculate x = [GTG + AI~'hT for each remaining sensor position
5. Select the sensor position that maximizes x(n) x(n)

6: Update GTG by G'G = GG + h"h

7: end

By default, regularization constant A was set to

tr(G, Gay)
Jo = % x0.1, ©

where G, is the leadfield matrix of all the candidate sensor positions.

3. Material and methods

We examined SORM'’s performance with two simulation tests: simple
and realistic. The simple simulation test characterizes SORM’s behav-
ior, and the realistic simulation test evaluates its efficacy for real OPM-
MEG data. Furthermore, we applied SORM to real OPM-MEG data. These
analyses were conducted using VBMEG (https://vbmeg.atr.jp/), which
is a MATLAB toolbox to estimate cortical currents from MEG and/or
electroencephalography (EEG) data (Takeda et al., 2019).

3.1. Simple simulation test

3.1.1. Simulated experiment

Our simulation posited that 16 healthy adults participated in an
OPM-MEG experiment. In it, they performed two tasks: motor and audi-
tory, each of which consisted of 100 trials. During the tasks, we recorded
the magnetic fields normal to their scalp surfaces (Z-axis) with OPM sen-
sors.
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3.1.2. Simulating brain activities

For simulating brain activities, we downloaded the 16 sub-
jects’” T1 images from the multi-subject, multi-modal neuroimaging
dataset (OpenNEURO ds000117-v1.0.1) created by Wakeman and Hen-
son (2015). From these images, we made brain models, which define
10,003 vertices on their cortical surfaces.

For the motor task, we selected two vertices from the left and right
primary motor cortices. These selected vertices are referred to as sources
in the simulation tests. We assigned currents at the sources and spatially
smoothed them using a Gaussian filter whose standard deviation (SD)
was 6 mm. For the auditory task, we selected two vertices, which are
also referred to as sources in the simulation tests, from the left and right
primary auditory cortices, assigned currents at the sources, and spatially
smoothed them using the Gaussian filter. To highlight the effect of the
signal leakage, the time-series of the currents were generated to be or-
thogonal between the sources so that the signal leakage between them
affected their estimation accuracy. The amplitudes of the simulated cur-
rents were determined based on that of a current estimated from actual
SQUID-MEG data.

3.1.3. Regions of interest

We set the ROIs based on the cortical parcellations defined in the
HCP MMP 1.0 (Glasser et al., 2016). For the motor task, we set them to
the primary motor cortices that are labeled “L_4_ROI” and “R_4_ROI” in
the HCP MMP 1.0. For the auditory task, we set the ROIs to the early au-
ditory cortices that are labeled “L_A1_ROI”, “L_MBelt_ ROI”, “R_A1_ROI”,
and “R_MBelt_ROI” in the HCP MMP 1.0.

3.1.4. Candidates of sensor positions

We set the candidates of the OPM sensor positions based on those of
the 102 magnetometers of an Elekta Neuromag Vectorview 306 system
(Helsinki). From the multi-subject, multi-modal neuroimaging dataset,
we derived the sensor positions of the magnetometers relative to the
brains, moved them 12 mm away from the scalp surfaces, and used them
as the candidates of the OPM sensor positions.

3.1.5. Making leadfield matrices

For each subject, we made a leadfield matrix of all the candidate
sensor positions. From the T1 image, we constructed a 1-shell (cere-
brospinal fluid [CSF]) head conductivity model. Based on it, we made a
leadfield matrix by solving the Maxwell equations with a boundary ele-
ment method (BEM). In this study, we assumed one-dimensional current
dipoles normal to the cortical surface.

3.1.6. Selecting sensor positions

We selected the sensor positions by three methods: uniform, lead-
field norm, and SORM. For all the methods, to select K sensor positions,
we ranked all the candidate sensor positions and selected the first K
positions.

In the uniform method, we manually ranked the sensor positions so
that the sensors were uniformly distributed over the brain. This rank
was fixed regardless of the subjects and the tasks.

In the leadfield norm method, we ranked the sensor positions based
on their sensitivities to the ROIs. From the leadfield matrix of all the can-
didate sensor positions, we extracted the leadfield vectors corresponding
to the ROIs, calculated their norms for the individual sensor positions,
and ranked them in descending order of the norms.

For the SORM, we ranked the sensor positions by the order of the
selected positions.

3.1.7. Simulating the OPM-MEG data

We set the number of OPM sensors to 1, ---, 50. For each number, we
simulated OPM-MEG data by Eq. (1). Observation noise E was made
using Gaussian white noise whose SD was 2 x 10~13 T.

Figure 2 shows the simulated brain activities and sample OPM-MEG
data at all the candidate positions. The signal-to-noise ratios (SNRs) of
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Fig. 2. Simulated brain activities and OPM-MEG data in simple simulation test. (A) Simulated brain activities. Top figures show amplitude distributions of simulated
cortical currents averaged across time. Values over 0.3 of their maximum value are shown. Bottom figures show time-series of simulated cortical currents in left and
right hemispheres. (B) Stimulus-triggered average of sample OPM-MEG data at 102 candidate positions.

the OPM-MEG data were —8.40 + 1.57 dB and —14.08 + 1.05 dB (mean
+ SD) for the motor and auditory tasks. The SNRs were calculated by
10log,, P,/ P,, where P, and P, are the powers of GJ and E in Eq. (1),
assuming that 102 OPM sensors were put at all the candidate positions.

3.1.8. Estimating the cortical currents

From the simulated OPM-MEG data, we estimated the cortical cur-
rents by three methods: MNE (Hémaldinen et al., 1993; Hamaéldinen and
Ilmoniemi, 1994), a LCMV beamformer (Van Veen et al., 1997), and hVB
(Sato et al., 2004; Yoshioka et al., 2008).

MNE estimated the current by

J =[G"G + Ay IT7'G"B,
where

r(G'G)
N X
The LCMV beamformer estimated the current by

g = 0.1.

j.=1,B,

where f,, is the estimated current at vertex n and I, is the 1 x M inverse
filter. The inverse filter was calculated by

P =1
I,=[g'D g1 'g'D™", (10)

where

D =D + g,

trD

Agp = — X 0.1.
BF = T/

g, is the M x 1 leadfield vector for vertex n. D is the M X M covariance
matrix computed between all the sensor pairs. We imposed regulariza-
tion term AgpI, assuming that in real data analyses covariance matrix D
often becomes rank deficient due to the noise reduction by independent
component analysis (ICA) and a common average referencing for EEG.

In this study, LCMV beamformer indicates a scalar-type beamformer be-
cause we assumed a one-dimensional current dipole at each vertex.

hVB provides a framework to use the prior information on the cur-
rent variance as soft constraints on the variance Sato et al. (2004);
Yoshioka et al. (2008). It can use a variety of prior information, such
as the uniform distribution, the fMRI activity, and a meta-analysis of
fMRI studies (Suzuki and Yamashita, 2021). We used the uniform distri-
bution as prior information on the current variance to set a confidence
parameter, “bayes_parm.prior_weight,” to 0.0001. This parameter con-
trols the confidence in the prior information relative to the amount of
data samples (ranging from O to 1) (Takeda et al., 2019).

The estimated currents were averaged across the trials.

3.1.9. Evaluating the accuracy of estimated source currents

For each condition (task, current estimation method, sensor array,
and subject), we quantified the time-series accuracy of the estimated
currents. At the sources, we calculated the correlation coefficients be-
tween the true and estimated currents and averaged them between
hemispheres.

3.1.10. Statistical test

We compared the time-series accuracy of SORM with those of the
uniform and leadfield norm methods. For each task, sensor array, and
current estimation method, we performed a two-tailed Wilcoxon signed-
rank test under the null hypothesis where the medians of the correlation
coefficients were identical between SORM and the uniform/leadfield
norm methods.

This is the multiple comparison problem, which we solved by con-
trolling the false discovery rate (FDR). FDR manages the expected pro-
portion of false positive findings among all the rejected null hypotheses
(Benjamini and Hochberg, 1995). We estimated the g-values by Storey
and Tibshirani’s method (2003). From the distribution of the p-values,
we first estimated the proportion of null p-values z,, and based on 7, we
converted the p-values to g-values. The FDRs were controlled at 0.01.
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3.1.11. Calculating contribution ratios in estimated source currents

To identify the factors responsible for the time-series accuracy, we
examined the contribution ratios in the estimated source currents. We
defined three kinds of contribution ratios: target, non-target, and noise.
The target contribution ratio is that of the component originated from
the left/right source in the estimated current at the left/right source;
it represents the purity of the estimated currents. The non-target con-
tribution ratio is that of the component originated from the right/left
source in the estimated current at the left/right source; it represents the
amount of signal leakage into a source from another source. The noise
contribution ratio is that of the components originated from the noise
[E in Eq. (1)].

To calculate the contribution ratios, we decomposed the simulated
OPM-MEG data into components originated from the left source, the
right source, and the noise. We separately converted these components
into cortical currents using the inverse filters from Section 3.1.8. For the
left source, the target contribution ratio was calculated by

M

Cligrget = — >
arge ity +,

where y;, y,., and y, are respectively the powers of the components origi-
nated from the left source, the right source, and the noise. The non-target
contribution ratio was calculated by

Vr

Clhon-tareet = ————-
Oy + Y+ vy

The noise contribution ratio was calculated by

Yn

cr _—t
ity ty,

noise —
In the same way, the contribution ratios were also calculated for the
right source. Then, they were averaged between the left and right
sources.

3.2. Analyzing real OPM-MEG, SQUID-MEG, and EEG data

For the realistic simulation test and applying SORM to real OPM-
MEG data, we created and analyzed the OPM-MEG, SQUID-MEG, and
EEG (OSE) dataset (https://vbmeg.atr.jp/nictitaku209/), which con-
tains four subjects’ OPM-MEG, SQUID-MEG, and EEG data during four
tasks: auditory, motor, somatosensory, and resting-state. It also contains
empty-room OPM-MEG data.

The four subjects participated in three recording sessions: OPM-
MEG, SQUID-MEG and EEG, and MRI. The OPM-MEG data were
recorded with 15 sensors (10 QZFM Gen-2 and five QZFM Gen-3, QuS-
pin Inc., U.S.), each of which recorded a magnetic field along two
axes (Y and Z) (Supplementary material, SFig. 1). The SQUID-MEG
and EEG data were simultaneously recorded with a whole-head 400-
channel system (210-channel Axial and 190-channel Planar Gradiome-
ters; PQ1400RM; Yokogawa Electric Co., Japan) and a whole-head 63-
channel system (BrainAmp; Brain Products GmbH, Germany). Electro-
oculograms (EOGs) were also recorded simultaneously.

We preprocessed the OPM-MEG, SQUID-MEG, and EEG data for esti-
mating the cortical currents. Because the OPM-MEG data contain large
fluctuation below 8 Hz, we applied a lowpass filter at 40 Hz and a high-
pass filter at 8 Hz to all the data. Then we regressed out the EOG com-
ponents from the data. For the EEG data, we took a common average
reference and made the averages of the EEG data across the channels to
0.

From T1 images, we constructed 1-shell (CSF) and 3-shell (CSF, skull,
and scalp) head conductivity models for the MEG and EEG data. Based
on the models, we made leadfield matrices by solving the Maxwell equa-
tions with the BEM. Using the leadfield matrices, we estimated the cor-
tical currents from the preprocessed OPM-MEG data. We also estimated
the cortical currents from the SQUID-MEG and EEG (SQUID-MEG + EEG)
data (Takeda et al., 2019).
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3.3. Realistic simulation test

We conducted a realistic simulation test in the same way as the sim-
ple one except for procedures to simulate the brain activities and the
OPM-MEG data. In this test, we simulated the former using the SQUID-
MEG + EEG data during the auditory task and the latter using the SQUID-
MEG + EEG data during the resting-state task and the empty-room OPM
data. These procedures are described below.

3.3.1. Simulating brain activities

To simulate realistic brain activities, we used the cortical currents
estimated from the SQUID-MEG + EEG data during the auditory task by
hVB. We extracted currents at the left and right auditory cortices from
a subject’s cortical current. At the same sources as the simple simula-
tion test, we assigned the currents and spatially smoothed them using
a Gaussian filter whose SD was 6 mm. The amplitudes of the simulated
currents were determined so that the reconstructed SQUID-MEG data
from the simulated currents had the same amplitudes as the original
one.

3.3.2. Simulating the OPM-MEG data

To simulate realistic OPM-MEG data, we used the cortical currents
estimated from the SQUID-MEG + EEG data during the resting-state task
and the empty-room OPM-MEG data. The OPM-MEG data was generated
by

B=GJ+GJ +E

where J is the simulated brain activity produced in Section 3.3.1 and
J , is the spontaneous brain activity. J, was extracted from the cortical
currents estimated from the SQUID-MEG + EEG data during the resting-
state task by MNE. E was generated from the empty-room OPM-MEG
data. We generated surrogate data which had the same amplitude and a
similar power spectrum with the preprocessed empty-room OPM-MEG
data and used it as E.

Figure 3 shows the simulated brain activity and the sample OPM-
MEG data at all the candidate positions. The SNRs of the OPM-MEG
data were —18.52 + 1.40 dB.

3.4. Applications to real OPM-MEG data

Finally, we evaluated the efficacy of SORM using real OPM-MEG data
during the auditory task. The OPM-MEG data were recorded with 30
channels (15 sensors x 2 axes) (Supplementary material, SFig. 1). Here
we regarded the 30 channels as the candidates of pseudo sensors. From
them, we selected sensors by the uniform, the leadfield norm, and the
SORM methods and estimated the cortical currents from the OPM-MEG
data of the selected sensors. We quantified the time-series accuracy of
the estimated currents by comparing them with the cortical currents es-
timated from the identical subjects’ SQUID-MEG + EEG data during the
auditory task. For each subject and vertex, we calculated the correla-
tion coefficient of the cortical currents between the OPM and SQUID-
MEG + EEG and averaged them within the ROIs (the early auditory cor-
tices). We did not conduct statistical tests because of the small sample
size (four subjects).

4. Results
4.1. Simple simulation test

To characterize the SORM behavior, we conducted a simple simula-
tion test. We assumed that the 16 subjects performed two tasks: motor
and auditory. During them, magnetic fields normal to their scalp sur-
faces were recorded with OPM sensors. We set the ROIs to the primary
motor cortices for the motor task and the early auditory cortices for the
auditory task (Fig. 4A).
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A Simulated brain activity B Stimulus-triggered average of ~ Fig. 3. Simulated brain activity and OPM-MEG
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9 tributions of simulated cortical current averaged
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4.1.1. Designed sensor arrays

Figure 4B shows the sensor arrays designed by the uniform, leadfield
norm, and SORM methods with 10 sensors. Compared with the uniform
method, SORM prioritized the positions around the ROIs. On the other
hand, compared with the leadfield norm method, SORM prioritized po-
sitions far from the ROIs.

To characterize the behaviors of these three methods, for each sensor
array we examined the property of the leadfield matrix by two indices:
sensitivity to the ROIs and the effective rank. To obtain sensitivity to
the ROIs, we extracted from the leadfield matrix the submatrix corre-
sponding to the ROIs and calculated its Frobenius norm. The effective
rank represents the diversity of the sensitivity vectors across the selected
sensor positions. We estimated it based on the singular values of the
leadfield matrix (Roy and Vetterli, 2007).

Figure 5 shows the sensitivity to the ROIs and the effective rank for
each sensor array. The uniform method showed high effective ranks but
low sensitivities to the ROIs (Fig. 5, blue lines). In contrast, the leadfield
norm method showed high sensitivities to the ROIs but low effective
ranks (Fig. 5, red lines). SORM showed both high sensitivities and high
effective ranks (Fig. 5, green lines). These results indicate that SORM
selected sensor positions to increase both the sensitivity and the rank,
while the other methods only increased one of them.

To comprehend the rationale of this result, we expressed x"x using
the singular value decomposition (SVD) (Appendix B). It suggests that
SORM tends to select a sensor position whose sensitivity vector has large
values at ROIs and is in the null space of the existing sensors’ leadfield
matrix, heightening the effective rank of the new sensor array. This sug-
gestion is consistent with Fig. 5. These results are intuitively interpreted
as follows: a new sensor should be sensitive to the ROIs and represent
outside of them to effectively suppress the signal leakage from the out-
side.

A Sensitivity to ROls B Effective rank
4
3 x10 40
Motor
E x
20 g
2 10 20 30 40 50 ; 10 20 30 40 50
9 =
® 3
4 i 40
=
Auditory

10 20 30 40 50
Number of sensors

10 20 30 40 50
Number of sensors

— Uniform
— Leadfield norm
— SORM

Fig. 5. Properties of leadfield matrices. (A) Sensitivity to ROIs. (B) Effective
rank. Thick lines and shaded areas represent averages and SDs of values across
subjects.

4.1.2. Accuracy of estimated source currents

For each sensor array, we simulated the OPM-MEG data and esti-
mated the cortical current with MNE, the LCMV beamformer, and hVB.
We evaluated the time-series accuracy of the estimated currents by the
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Fig. 6. Time-series accuracy of estimated source cur-
rents in simple simulation test. For each subject, we
calculated correlation coefficients between true and es-
timated currents at left and right sources and averaged
them between hemispheres. Thick lines and shaded
areas represent averages and SDs of correlation coef-
ficients across subjects. Asterisks indicate that corre-
lation coefficients of SORM were significantly higher
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than those of uniform and leadfield norm methods
(g < 0.01).
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Number of sensors

correlation coefficients between the true and estimated currents at the
sources.

Figure 6 shows the time-series accuracy of the estimated currents.
For all the current estimation methods, SORM outperformed the uniform
and leadfield norm methods, especially when we used few sensors (< 15
sensors). This result indicates the efficacy of SORM for various current
estimation methods.

On the other hand, when we used MNE and SORM, the time-series
accuracy decreased as the number of sensors increased (Figs. 6A and
D, green lines). This result indicates that using more sensors was not
always better for MNE.

4.1.3. Contribution ratios in estimated source currents

To interpret the time-series accuracy, we calculated the contribution
ratios in the estimated source currents during the auditory task. Figure 7
shows the contribution ratios averaged across the subjects. The target
contribution ratios highly correlated with the time-series accuracy (their
correlation coefficients were 0.94 + 0.03) (Fig. 7, blue areas). This result
suggests that the time-series accuracy mainly reflected the purity of the
estimated currents.

When we used MNE, SORM drastically decreased the non-target con-
tribution ratios as the number of sensors increased (Fig. 7G, red area).
This result indicates that SORM effectively suppressed the signal leak-
age and increased the time-series accuracy, suggesting the validity of its
algorithm.

On the other hand, when we used MNE and SORM, the time-series
accuracy decreased as the number of sensors increased (Figs. 6A and
D, green lines). The contribution ratios suggest that this was due to the
increase of the noise contribution ratios (Fig. 7G, green areas). As the
number of sensors increased, SORM added sensor positions where the
data had low SNR. This increased the noise contribution ratios and de-
creased the time-series accuracy.

On the contrary, when we used the LCMV beamformer and hVB, the
time-series accuracy did not greatly decrease (Figs. 6B, C, E, and F).
The contribution ratios suggest that the LCMV beamformer suppressed
the noise contribution ratios (Figs. 7B, E, and H, green areas), hVB sup-
pressed the non-target and noise contribution ratios (Figs. 7C, F, and I,
red and green areas), and as a result their time-series accuracy did not
greatly decrease.

10 20 30 40 50

—— Uniform
—— Leadfield norm
—— SORM

* §<0.01

4.2. Realistic simulation test

To evaluate the efficacy of SORM for real OPM-MEG data, we con-
ducted a realistic simulation test. In it, we used the real data to simulate
the brain activities and noise. We used the same sensor arrays from the
simple simulation test (Fig. 4B) because we set the ROIs to the same ar-
eas (the early auditory cortices) as the simple simulation test (Fig. 4A).

Figure 8 shows the time-series accuracy of the estimated currents.
SORM outperformed the other methods, especially when we used the
LCMV beamformer and just a few sensors (< 15 sensors). This tendency
held unless the SNR was too low (Supplementary material, SFig. 2), in-
dicating the efficacy of SORM for real OPM-MEG data.

4.3. Dependency on regularization constant

SORM has a hyperparameter: the regularization constant [A in
Eq. (8)], which was set to A, [Eq. (9)] by default. We examined the
dependency of SORM on the regularization constant by changing the
regularization constant to 1004, 4, and 0.014,. For each constant, we
designed the sensor array for the auditory task by SORM, simulated the
OPM-MEG data during the auditory task, estimated the current by MNE,
and evaluated the time-series accuracy.

Figure 9 shows the sensor arrays and the time-series accuracy for
each regularization constant. They were almost the same across the con-
stants, indicating that SORM did not largely depend on the regulariza-
tion constant.

4.4. Application to real OPM-MEG data

Finally, we applied SORM to the real OPM-MEG data during the au-
ditory task. We regarded the 30 OPM channels as the candidates of the
pseudo sensors and from them selected some sensors (Fig. 10A). From
the OPM-MEG data of the selected sensors, we estimated the cortical cur-
rents (Fig. 10B). The estimated currents at the ROIs (the early auditory
cortices) were compared with those estimated from the same subjects’
SQUID-MEG + EEG data during the auditory task (Fig. 10C).

Figure 10D shows the similarity of the estimated currents. Even when
we used just a few pseudo sensors (< 10 sensors), SORM showed high
similarity comparable with the leadfield norm method. That is, even
with few pseudo OPM sensors, the leadfield norm method and SORM
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Fig. 7. Contribution ratios in estimated source cur-
rents of auditory task in simple simulation test. They
were averaged across subjects.
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enabled us to obtain the ROIs’ currents resembling those estimated from
a massive amount of data (400-ch SQUID-MEG and 63-ch EEG data).
This result also indicates the efficacy of SORM for real OPM-MEG data.

5. Discussion

In this study, we proposed a SORM algorithm to design an OPM sen-
sor array for accurately estimating the activity of ROIs. It sequentially
selects sensor positions so that the resolution matrix of MNE has large
diagonal elements at the ROIs. This strategy made the leadfield matrix
have a high effective rank as well as high sensitivity to the ROIs (Fig. 5,
green lines). Indeed, our mathematical consideration provided the ra-
tionale behind this result (Appendix B). Simulation tests showed that
the SORM yielded higher time-series accuracy than the other methods,
especially when we used a few sensors (< 15 sensors) (Figs. 6 and 8).
Although SORM is based on MNE, the sensor arrays designed by SORM
worked well regardless of the current estimation methods (Fig. 6). We
also applied SORM to real OPM-MEG data and confirmed its efficacy for
real data. These results suggest the efficacy of SORM when we want to
accurately estimate ROIs’ activity with a limited number of OPM sen-
sors.

5.1. Methodological considerations

SORM sequentially selects the sensor positions from their candidates
so that the MNE’s resolution matrix has large diagonal elements at the
ROIs. This is a combinatorial optimization problem, which we solved by
a greedy algorithm. For example, when we select the 10 optimal sensor
positions from the 102 candidates, we need to find one solution from
102C10 > 2 X 1013 combinations. Note that SORM does not find the op-
timal solution; it provides a sub-optimal one. By using the recurrence
formula of the resolution matrix [Eq. (7)], SORM approximately solves
this problem quickly. Indeed, it selected the 10 sensor positions from the
102 candidates within one minute using our computer [Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz, 20 cores] and the selected positions out-
performed those of the uniform and leadfield norm methods (Figs. 6
and 8). Since the SORM algorithm is very easy to implement, SORM is
practical for a wide range of OPM users.

To accurately estimate ROIs’ activities, SORM focuses on the diago-
nal elements at them in the MNE’s resolution matrix and tries to increase
them. However, this strategy also increased the non-diagonal elements
and the diagonal elements (Supplementary material, SFig. 3), indicat-
ing that SORM enlarged the signal leakage into the ROIs as well as the
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ROIs’ activities. Nevertheless, SORM worked well in our simulation tests
and applications to the OPM-MEG data (Figs. 6-10). As the number of
sensors increased, the diagonal elements increased faster than the non-
diagonal elements at the ROIs (Supplementary material, SFig. 3). As a
result, the time-series of the estimated currents at the ROIs became more
accurate as the number of sensors rose.

5.2. Spatial accuracy of estimated cortical currents

We focused on the temporal accuracy of the estimated cortical cur-
rents at ROIs and ignored their spatial accuracy. This is because SORM
assumes that we have ROIs, meaning that we already know the infor-
mation of the source locations. In this case, since evaluating the spatial
accuracy is not very meaningful, we focused on the temporal accuracy
and optimized the SORM algorithm to increase it.

On the other hand, the spatial accuracy of estimated currents has
been widely evaluated in source imaging studies by localization accu-
racy and spatial extent (e.g. Hauk et al., 2022; Sekihara et al., 2005.
Following these studies, we also evaluated the spatial accuracy of the
estimated currents. SORM showed comparable spatial accuracy with the
uniform and leadfield norm methods (Supplementary material, SFig. 4).

5.3. Contribution ratios

To identify the factors responsible for the time-series accuracy of the
estimated source currents, we examined the contribution ratios in the

Fig. 10. Application to real OPM-MEG
data. (A) Sensor array of 10 pseudo sen-
sors designed by SORM. (B) Cortical current
estimated from OPM-MEG data at selected
pseudo sensors (A). (C) Cortical current es-
timated from SQUID-MEG+EEG data. In
B and C, cortical currents during audi-
tory task estimated by hVB are shown.
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currents (Fig. 7). The contribution ratios suggest that the time-series
accuracy (Fig. 6) mainly reflected the purity of the estimated currents
(Fig. 7, blue areas). They also indicate that SORM effectively suppressed
the signal leakage in the currents estimated by MNE (Fig. 7G, red area)
and increased their time-series accuracy (Fig. 6D, green line), suggesting
the validity of the SORM algorithm.

On the other hand, the contribution ratios revealed differences across
the current estimation methods. For example, although the LCMV beam-
former and hVB showed comparable time-series accuracy (Figs. 6E and
F, green lines), the contribution ratios identified different strategies. The
LCMV beamformer achieved high accuracy by suppressing the noise
contribution ratio (Fig. 7H, green area), and hVB achieved it by sup-
pressing the signal leakage (Fig. 71, red area). In this way, the contri-
bution ratios highlighted the differences across the current estimation
methods and helped us select the best method for our purpose.

5.4. Extended usages

SORM uses MNE’s resolution matrix because it can be calculated
without MEG data [Eq. (6)]; that is, we do not need to conduct an MEG
experiment in advance to design the sensor arrays. On the other hand,
we can calculate the resolution matrices for other current estimation
methods, such as the LCMV beamformer. Such adaptive filter methods
need MEG data to calculate their resolution matrices. For example, the
LCMV beamformer needs a covariance matrix computed between all the
sensor pairs, and we need to estimate it by conducting a preparatory ex-
periment or from existing data, such as open data. Once the covariance
matrix is obtained, we can apply the same greedy algorithm as SORM
(Section 2.3) except for steps 4 and 5. At these steps, instead of calculat-
ing x(n)Tx(n), we must calculate Eqs. (10) and (5) for each remaining
sensor position to find the position that maximizes the diagonal elements
at the ROIs in the resolution matrix.

SORM assumes that each OPM sensor measures a magnetic field
along a single axis. However, current commercial OPM sensors can si-
multaneously measure a magnetic field along two or three axes. Indeed,
the OPM-MEG data of the OSE dataset were recorded with the dual-axial
sensors. With tri-axial OPM sensors, we can estimate 3D magnetic field
vectors at the sensors. Furthermore, using tri-axial OPM sensors has the-
oretical advantages for current estimation (Brookes et al., 2021). SORM
can be easily extended for tri-axial OPM sensors. In this case, each sen-
sor has three channels. Using SORM, we can rank all the channels and
the sensor positions based on the best channel in each sensor position
and select the top K sensor positions.

5.5. Applicability

Since SORM designs the sensor arrays for accurately estimating ROIs’
activity, it is suitable when we know the ROIs, such as BCI and diagnos-
ing brain diseases. Recent proof-of-concept studies suggested the use-
fulness of OPM for non-invasive BCI (Wittevrongel et al., 2021) and
diagnosing epilepsy (Vivekananda et al., 2020). For such purposes, sim-
ple MEG measurement systems with a few OPM sensors are practically
helpful. For BCI, by setting the ROIs to the motor cortices, SORM can
design a sensor array to accurately estimate a subject’s motor intension.
For the diagnosis of brain diseases, by setting ROIs to such affected re-
gions as epileptic foci, SORM could design a sensor array to accurately
monitor their activities.

Since SORM only relies on leadfield matrices [Eq. (8)], it can be ap-
plied to various problems where leadfield matrices (or forward models)
exist, such as designing sensor arrays of EEG and near-infrared spec-
troscopy (NIRS). SORM can be used not only for the brain but also for
the heart, muscles, and peripheral nerves, etc. For example, it could de-
sign an effective OPM sensor array for reconstructing cardiac activity
from a magnetocardiography.
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Data and code availability

The data used in this study are publicly available from the multi-
subject, multi-modal neuroimaging dataset (OpenNEURO ds000117-
v1.0.1, https://openneuro.org/datasets/ds000117 /versions/1.0.1/)
and the OSE dataset (https://vbmeg.atr.jp/nictitaku209/). The
codes for performing SORM are available at https://github.com/
RIKEN-AIP-CBDteam/Takeda2023_SORM.
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Appendix A

In this section, we derive Eq. (7), which represents how the resolu-
tion matrix of MNE changes by adding a new sensor. Here we assume
that each sensor has a single channel.

We use the following notations and equations:

. M: number of existing channels (sensors)

N: number of vertices

G: M x N leadfield matrix of existing sensors

h: 1 X N sensitivity vector of a new sensor

. G,: concatenated matrix of G and h (G = [G; h] in MATLAB nota-

tion)

.GiG,=G"G+h"h

7. C=G'G+ I

8. [C+h"h]' =C!
Tipping (2001)

9. R = C~'G"G: resolution matrix of existing sensors

arwb=

[)}

_ ¢ 'WThc”!

TTRC T [Derived from Eq. (11) in Faul and

Using the above notations and equations, the resolution matrix after
adding a new sensor can be written:

R, = [67G, + 167G,
=|G"G+ I+ hTh]71 (GG +h"h) (Using the 6-th equation)
=[C+ hTh]_1 (GG + h™h)  (Using the 7-th equation)


https://openneuro.org/datasets/ds000117/versions/1.0.1/
https://vbmeg.atr.jp/nictitaku209/
https://github.com/RIKEN-AIP-CBDteam/Takeda2023_SORM

Y. Takeda, T. Gomi, R. Umebayashi et al.

(e

=C'6"G +C'h"h -

1 C'n"hC™!

TR ) (GG +h"h) (Using the 8-th equation)

C'A"hC'GTG _ CT'WThC'WTh

1+hC™'AT 1+hC AT
CRic-pTh CMRCTIC—AD ' hC T hTh
1+hC'AT 1+hC'AT
(Using the 9-th equation)
— R+ C'HTh— C'aTh—aCc'A"hC + hC~'ATC W h
1+hC AT
R4 CTh (1+hC'RT)C'hTh — AC™'HThC™!
1+hC™'H"
—15T —1
= R4 ACT'HTRCT
1 +hC~'AT
Appendix B

To understand which kind of sensor position maximizes xx, we ex-
press it by the singular vectors of the leadfield matrix of the existing
sensors. We use the same notations and equations as in Appendix A. For
simplicity, we set the ROIs to the whole brain.

SVD decomposes the leadfield matrix of existing sensors G as

G=Uzv",

where U is an M x M orthogonal matrix, X is an M x N rectangular
diagonal matrix, and V is an N x N orthogonal matrix. By using G =
UZVT, C and C™! can be written as

C=G"G+ I
=vVE'Z+AnvT
and
Cl=vETs+iD VT
Gain vector x can be written as
x=C'nT
=VETZ+ D 'vTaT,
Consequently, we obtain

xTx = hWWE'Z + AD2V AT

i hv,
- 2
ai\o;t+4

where v, is the n-th column vector in V, hv, is the dot product of h
and v,, o, is the n-th diagonal element in X, and 5, =0 if n > M. v, and
o, represent the orthogonal basis and its scale in G. Because o, = 0 for
n> M, vy, vy represent the null space of G.

The above equation suggests that xTx increases in the following two
cases:

¢ his large; that is, a sensor position has high sensitivity to the ROIs.

e hv, is large when o, = 0; that is, the sensitivity vector of a sensor
position is in the null space of the leadfield matrix of the existing
Sensors.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.neuroimage.2023.120257
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