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a b s t r a c t 

An optically pumped magnetometer (OPM) is a new generation of magnetoencephalography (MEG) devices that 

is small, light, and works at room temperature. Due to these characteristics, OPMs enable flexible and wearable 

MEG systems. On the other hand, if we have a limited number of OPM sensors, we need to carefully design their 

sensor arrays depending on our purposes and regions of interests (ROIs). In this study, we propose a method that 

designs OPM sensor arrays for accurately estimating the cortical currents at the ROIs. Based on the resolution 

matrix of minimum norm estimate (MNE), our method sequentially determines the position of each sensor to 

optimize its inverse filter pointing to the ROIs and suppressing the signal leakage from the other areas. We call 

this method the Sensor array Optimization based on Resolution Matrix (SORM). We conducted simple and realistic 

simulation tests to evaluate its characteristics and efficacy for real OPM-MEG data. SORM designed the sensor 

arrays so that their leadfield matrices had high effective ranks as well as high sensitivities to ROIs. Although 

SORM is based on MNE, the sensor arrays designed by SORM were effective not only when we estimated the 

cortical currents by MNE but also when we did so by other methods. With real OPM-MEG data we confirmed its 

validity for real data. These analyses suggest that SORM is especially useful when we want to accurately estimate 

ROIs’ activities with a limited number of OPM sensors, such as brain-machine interfaces and diagnosing brain 

diseases. 
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. Introduction 

Our brain activities produce very weak magnetic fields outside of

ur heads. By measuring these magnetic fields, we can examine brain

ctivities with excellent temporal resolution on the millisecond order.

onventionally, the magnetic fields produced by our brains have been

easured by magnetoencephalography (MEG) systems equipped with

uperconducting QUantum Interference Devices (SQUIDs), such as the

lekta Neuromag Vectorview 306 system (Helsinki). These systems are

arge, placing more than 200 sensors over the whole head, and liquid

elium is housed around the sensors to cool them. 

Recently, a new device was introduced ( Shah and Wakai, 2013 ), an

ptically pumped magnetometer (OPM), which has attracted great in-

erest from the MEG community ( Boto et al., 2016; 2017; Brookes et al.,

022; Ilmoniemi and Sarvas, 2019; Tierney et al., 2019 ). An OPM sen-

or is small, light, and works at room temperature without cryogenic

ooling. Due to these characteristics, OPMs enable flexible and wear-

ble MEG systems, which allow us to measure MEGs under such severe
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ituations that include the brain activities of children and during move-

ents ( Seymour et al., 2021 ). Furthermore, we can put OPM sensors on

he head, yielding high sensitivity to brain activities ( Boto et al., 2017;

ivanainen et al., 2017 ). 

On the other hand, because this technology is still in its early stage,

ell-established OPM-MEG measurement systems are currently unavail-

ble. After buying OPM sensors, we ourselves need to construct an MEG

easurement system, such as a coil system for nulling the environmen-

al magnetic field ( Holmes et al., 2018; 2019; Iivanainen et al., 2019 )

nd a cap or helmet to hold the sensors ( Hill et al., 2020 ). If we only

ave a few OPM sensors (a common case for many OPM users), we must

esign the sensor array carefully depending on our purposes and the re-

ions of interests (ROIs). For example, if we want to extract the brain

ctivity at the motor cortex with five OPM sensors for a brain-computer

nterface (BCI), the sensors should be placed around the motor cortex.

owever, the accuracy of this expectation is unclear. Even if it is true,

e do not know at which positions the sensors should be put. 
ne 2023 

ticle under the CC BY-NC-ND license 
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Fig. 1. Relationship between sensor array and signal leakage. ( A ) Assumed sen- 

sor arrays. Red circles indicate sensor positions. ( B ) ROI (a vertex in left so- 

matosensory cortex). ( C ) Signal leakage into ROI from other areas. For each 

sensor array in A , we calculated MNE’s resolution matrix and showed its ab- 

solute row vector values at ROI. Values over 0.3 of their maximum value are 

shown. 
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Recently, Beltrachini et al. (2021) proposed a method to design OPM

ensor arrays for minimizing source localization error. It sequentially de-

ermines the sensor positions to minimize the Cramér-Rao bound of the

ource localization error. However, because their scheme was developed

or dipole methods ( Muravchik et al., 2000 ), which approximate brain

ctivities by a small number of current dipoles ( Aine et al., 2000; Hari,

991; Mosher et al., 1992 ), it cannot be used for distributed source meth-

ds, such as Minimum Norm Estimates (MNE) ( Hämäläinen et al., 1993;

ämäläinen and Ilmoniemi, 1994; Ilmoniemi and Sarvas, 2019 ) or a Lin-

arly Constrained Minimum Variance (LCMV) beamformer ( Ilmoniemi

nd Sarvas, 2019; Van Veen et al., 1997 ). Distributed source methods

ssume distributed currents in the brain and are widely used in the MEG

iterature. 

In this study, we propose a method that designs OPM sensor arrays

or accurately estimating distributed currents. From a set of possible

ensor positions, our method selects some positions so that the esti-

ated cortical currents have accurate time-series at the ROIs. To achieve

his aim, we focus on the MNE’s resolution matrix ( Hauk et al., 2022;

rave de Peralta-Menendez and Gonzalez-Andino, 1998 ), which rep-

esents the relationship between the true and estimated currents. The

arger the diagonal elements in the resolution matrix are, the more ac-

urate the time-series of the estimated current becomes. Therefore, we

erived a recurrence formula of the resolution matrix and based on it,

equentially selected sensor positions so that the resolution matrix has

arge diagonal elements at the ROIs. We call this method a Sensor array

ptimization based on Resolution Matrix (SORM). 

We conducted simple and realistic simulation tests to evaluate its

haracteristics and efficacy for real OPM-MEG data. SORM selected sen-

or positions so that their leadfield matrices had high effective ranks

s well as high sensitivities to ROIs. The sensor arrays designed by

ORM were effective not only when we estimated the cortical currents

y MNE but also when we did so by other methods: an LCMV beam-

ormer ( Van Veen et al., 1997 ) and the hierarchical Variational Bayesian

ethod (hVB) ( Sato et al., 2004; Yoshioka et al., 2008 ). Furthermore,

e applied SORM to real OPM-MEG data to confirm its validity for real

ata. Based on these analyses, we believe that SORM is especially useful

or accurately estimating ROIs’ activities with a limited number of OPM

ensors, such as BCI and the diagnosis of brain diseases. 

. Designing sensor arrays based on resolution matrix 

In this section, we propose our SORM algorithm. 

.1. Assumption and purpose 

We assume that we know the ROIs and that the possible OPM sensor

ocations have already been determined. Hereafter, for brevity, the set of

ossible OPM sensor locations is called the candidates. Given these ROIs

nd candidates, SORM selects the sensor positions so that the estimated

ortical currents at the ROIs have accurate time-series. 

.2. Basic strategy 

For this purpose, we focus on the resolution matrix ( Hauk et al.,

022; Grave de Peralta-Menendez and Gonzalez-Andino, 1998 ) of MNE

 Hämäläinen et al., 1993; Hämäläinen and Ilmoniemi, 1994 ). We ex-

lain this by starting from the basics of cortical current estimation. 

In distributed source methods, MEG data are expressed as 

 = 𝑮 𝑱 + 𝑬 , (1)

here 𝑩 is the 𝑀 × 𝑇 MEG data matrix, 𝑀 is the number of channels,

 is the number of time points, 𝑮 is the 𝑀 ×𝑁 leadfield matrix, 𝑁 is

he number of current dipoles (vertices), 𝑱 is the 𝑁 × 𝑇 cortical current

atrix, and 𝑬 is the 𝑀 × 𝑇 noise matrix. 

Cortical current 𝑱 is estimated by 

̂
 = 𝑳 𝑩 , (2)
2 
here 𝑳 is an 𝑁 ×𝑀 matrix, called an inverse filter. In the case of MNE,

 is calculated by 

 = [ 𝑮 

T 𝑮 + 𝜆𝑰 ] −1 𝑮 

T , (3)

here 𝜆 is a regularization constant and 𝑰 is the 𝑁 ×𝑁 identity matrix.

y substituting Eq. (1) for 𝑩 in Eq. (2) , we obtain 

̂
 = 𝑳 𝑮 𝑱 + 𝑳 𝑬 . (4)

y putting 

 = 𝑳 𝑮 (5) 

nd taking the expectation of 𝑬 , Eq. (4) is rewritten as 

[ ̂𝑱 ] = 𝑹 𝑱 . 

 is an 𝑁 ×𝑁 matrix, called a resolution matrix ( Hauk et al., 2022;

rave de Peralta-Menendez and Gonzalez-Andino, 1998 ), which repre-

ents the relationship between the true and estimated currents. 

If 𝑹 is an identity matrix, the current is perfectly estimated. How-

ver, 𝑹 is strongly degenerate because its rank is 𝑀 << 𝑁 , and therefore

t cannot be an identity matrix with rank 𝑁 . The non-diagonal elements

f 𝑹 represent the signal leakage that occurs when estimating the cur-

ent ( Brookes et al., 2012; Colclough et al., 2015; Palva et al., 2018;

ato et al., 2018 ). Specifically, 𝑹 ( 𝑎, 𝑏 ) , where 𝑏 ≠ 𝑎 , represents the sig-

al leakage from vertex 𝑏 to 𝑎 . Therefore, to accurately estimate the

urrent at vertex 𝑎 , 𝑹 ( 𝑎, 𝑎 ) needs to be larger than 𝑹 ( 𝑎, 𝑏 ) . 
In the case of MNE, the resolution matrix is calculated from

qs. (3) and (5) by 

 = [ 𝑮 

T 𝑮 + 𝜆𝑰 ] −1 𝑮 

T 𝑮 . (6)

his is a symmetric matrix; that is, the signal leakage from vertex 𝑏 to

 and from 𝑎 to 𝑏 is identical. Because this equation does not include

EG data, we do not need to conduct MEG experiments to calculate the

esolution matrices of MNE. 

Figure 1 shows sample resolution matrices. We assumed two sensor

rrays ( Fig. 1 A, red circles). For each, we calculated the resolution ma-

rix of MNE by Eq. (6) (see Section 3 for detailed descriptions). We set

OI to a vertex in the left somatosensory cortex ( Fig. 1 B). To examine

he signal leakage into the ROI from other areas, we show the absolute

alues of the row vector at the ROI in the resolution matrix ( Fig. 1 C):

 so-called cross-talk function ( Hauk et al., 2022 ). The signal leakage

argely changed depending on the sensor arrays. 

These considerations and results lead to SORM’s basic strategy: de-

ermine the sensor positions so that the resolution matrix of MNE has

arger diagonal elements than the non-diagonal elements at the ROIs. 
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.3. Procedure to select sensor positions 

To identify the relationship between the sensor positions and MNE’s

esolution matrix, we derived how the resolution matrix changes by

dding a new sensor. Here we assume that each sensor measures a mag-

etic field along a single axis; each sensor has a single channel. 

Suppose that we already set some sensors whose leadfield and res-

lution matrices of MNE are 𝑮 and 𝑹 . By adding a new sensor, 𝑹 is

hanged to 

 + = 𝑹 + 

𝜆𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 

1 + 𝒉 𝑪 

−1 𝒉 T 
, (7)

here 𝑪 = 𝑮 

T 𝑮 + 𝜆𝑰 and 𝒉 is a new row of the leadfield matrix cor-

esponding to the new sensor [see Appendix A for the derivation of

q. (7) ]. Hereafter, a row of a leadfield matrix is called a sensitivity vec-

or because it represents a sensor’s sensitivity to each vertex. By defining

 gain vector 

 = 𝑪 

−1 𝒉 T = [ 𝑮 

T 𝑮 + 𝜆𝑰 ] −1 𝒉 T , (8)

q. (7) is rewritten as 

 + = 𝑹 + 

𝜆𝒙 𝒙 T 

1 + 𝒙 T 𝑪 𝒙 
. 

ecause 𝜆∕(1 + 𝒙 T 𝑪 𝒙 ) is scalar, we focus on 𝒙 𝒙 T , which is an 𝑁 ×𝑁

atrix. The power of its diagonal elements at ROIs can be calculated

y 𝒙 ( 𝒏 ) T 𝒙 ( 𝒏 ) , where 𝒏 = [ 𝑛 1 , ⋯ , 𝑛 𝑣 ] represents the elements correspond-

ng to ROIs. If 𝒙 ( 𝒏 ) T 𝒙 ( 𝒏 ) is large, the diagonal elements at ROIs in 𝑹 + 
ncrease. 

Based on these results, we propose the following procedure that se-

ects the sensor positions from their candidates ( Algorithm 1 ): 

lgorithm 1 Select K sensor positions. 

1: Set 𝜆 to a fixed value 

2: Initialize 𝑮 

T 𝑮 by 𝑮 

T 𝑮 = zeros ( 𝑁 , 𝑁 ) 
3: for 𝑘 = 1 ∶ 𝐾
4: Calculate 𝒙 = [ 𝑮 

T 𝑮 + 𝜆𝑰 ] −1 𝒉 T for each remaining sensor position

5: Select the sensor position that maximizes 𝒙 ( 𝒏 ) T 𝒙 ( 𝒏 ) 
6: Update 𝑮 

T 𝑮 by 𝑮 

T 𝑮 = 𝑮 

T 𝑮 + 𝒉 T 𝒉 

7: end 

By default, regularization constant 𝜆 was set to 

0 = 

tr ( 𝑮 

T 
all 
𝑮 all ) 

𝑁 

× 0 . 1 , (9)

here 𝑮 all is the leadfield matrix of all the candidate sensor positions. 

. Material and methods 

We examined SORM’s performance with two simulation tests: simple

nd realistic. The simple simulation test characterizes SORM’s behav-

or, and the realistic simulation test evaluates its efficacy for real OPM-

EG data. Furthermore, we applied SORM to real OPM-MEG data. These

nalyses were conducted using VBMEG ( https://vbmeg.atr.jp/ ), which

s a MATLAB toolbox to estimate cortical currents from MEG and/or

lectroencephalography (EEG) data ( Takeda et al., 2019 ). 

.1. Simple simulation test 

.1.1. Simulated experiment 

Our simulation posited that 16 healthy adults participated in an

PM-MEG experiment. In it, they performed two tasks: motor and audi-

ory, each of which consisted of 100 trials. During the tasks, we recorded

he magnetic fields normal to their scalp surfaces (Z-axis) with OPM sen-

ors. 
3 
.1.2. Simulating brain activities 

For simulating brain activities, we downloaded the 16 sub-

ects’ T1 images from the multi-subject, multi-modal neuroimaging

ataset (OpenNEURO ds000117-v1.0.1) created by Wakeman and Hen-

on (2015) . From these images, we made brain models, which define

0,003 vertices on their cortical surfaces. 

For the motor task, we selected two vertices from the left and right

rimary motor cortices. These selected vertices are referred to as sources

n the simulation tests. We assigned currents at the sources and spatially

moothed them using a Gaussian filter whose standard deviation (SD)

as 6 mm. For the auditory task, we selected two vertices, which are

lso referred to as sources in the simulation tests, from the left and right

rimary auditory cortices, assigned currents at the sources, and spatially

moothed them using the Gaussian filter. To highlight the effect of the

ignal leakage, the time-series of the currents were generated to be or-

hogonal between the sources so that the signal leakage between them

ffected their estimation accuracy. The amplitudes of the simulated cur-

ents were determined based on that of a current estimated from actual

QUID-MEG data. 

.1.3. Regions of interest 

We set the ROIs based on the cortical parcellations defined in the

CP MMP 1.0 ( Glasser et al., 2016 ). For the motor task, we set them to

he primary motor cortices that are labeled “L_4_ROI ” and “R_4_ROI ” in

he HCP MMP 1.0. For the auditory task, we set the ROIs to the early au-

itory cortices that are labeled “L_A1_ROI ”, “L_MBelt_ROI ”, “R_A1_ROI ”,

nd “R_MBelt_ROI ” in the HCP MMP 1.0. 

.1.4. Candidates of sensor positions 

We set the candidates of the OPM sensor positions based on those of

he 102 magnetometers of an Elekta Neuromag Vectorview 306 system

Helsinki). From the multi-subject, multi-modal neuroimaging dataset,

e derived the sensor positions of the magnetometers relative to the

rains, moved them 12 mm away from the scalp surfaces, and used them

s the candidates of the OPM sensor positions. 

.1.5. Making leadfield matrices 

For each subject, we made a leadfield matrix of all the candidate

ensor positions. From the T1 image, we constructed a 1-shell (cere-

rospinal fluid [CSF]) head conductivity model. Based on it, we made a

eadfield matrix by solving the Maxwell equations with a boundary ele-

ent method (BEM). In this study, we assumed one-dimensional current

ipoles normal to the cortical surface. 

.1.6. Selecting sensor positions 

We selected the sensor positions by three methods: uniform, lead-

eld norm, and SORM. For all the methods, to select 𝐾 sensor positions,

e ranked all the candidate sensor positions and selected the first 𝐾

ositions. 

In the uniform method, we manually ranked the sensor positions so

hat the sensors were uniformly distributed over the brain. This rank

as fixed regardless of the subjects and the tasks. 

In the leadfield norm method, we ranked the sensor positions based

n their sensitivities to the ROIs. From the leadfield matrix of all the can-

idate sensor positions, we extracted the leadfield vectors corresponding

o the ROIs, calculated their norms for the individual sensor positions,

nd ranked them in descending order of the norms. 

For the SORM, we ranked the sensor positions by the order of the

elected positions. 

.1.7. Simulating the OPM-MEG data 

We set the number of OPM sensors to 1 , ⋯ , 50 . For each number, we

imulated OPM-MEG data by Eq. (1) . Observation noise 𝑬 was made

sing Gaussian white noise whose SD was 2 × 10 −13 T. 

Figure 2 shows the simulated brain activities and sample OPM-MEG

ata at all the candidate positions. The signal-to-noise ratios (SNRs) of

https://vbmeg.atr.jp/
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Fig. 2. Simulated brain activities and OPM-MEG data in simple simulation test. ( A ) Simulated brain activities. Top figures show amplitude distributions of simulated 

cortical currents averaged across time. Values over 0.3 of their maximum value are shown. Bottom figures show time-series of simulated cortical currents in left and 

right hemispheres. ( B ) Stimulus-triggered average of sample OPM-MEG data at 102 candidate positions. 
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he OPM-MEG data were −8 . 40 ± 1 . 57 dB and −14 . 08 ± 1 . 05 dB (mean

 SD) for the motor and auditory tasks. The SNRs were calculated by

0 log 10 𝑃 𝑠 ∕ 𝑃 𝑛 , where 𝑃 𝑠 and 𝑃 𝑛 are the powers of 𝑮 𝑱 and 𝑬 in Eq. (1) ,

ssuming that 102 OPM sensors were put at all the candidate positions.

.1.8. Estimating the cortical currents 

From the simulated OPM-MEG data, we estimated the cortical cur-

ents by three methods: MNE ( Hämäläinen et al., 1993; Hämäläinen and

lmoniemi, 1994 ), a LCMV beamformer ( Van Veen et al., 1997 ), and hVB

 Sato et al., 2004; Yoshioka et al., 2008 ). 

MNE estimated the current by 

̂
 = [ 𝑮 

T 𝑮 + 𝜆MNE 𝑰 ] −1 𝑮 

T 𝑩 , 

here 

MNE = 

tr ( 𝑮 

T 𝑮 ) 
𝑁 

× 0 . 1 . 

The LCMV beamformer estimated the current by 

 ̂𝑛 = 𝒍 𝑛 𝑩 , 

here 𝒋 𝑛 is the estimated current at vertex 𝑛 and 𝒍 𝑛 is the 1 ×𝑀 inverse

lter. The inverse filter was calculated by 

 𝑛 = [ 𝒈 T 
𝑛 
𝑫̃ 

−1 
𝒈 𝑛 ] −1 𝒈 T 𝑛 𝑫̃ 

−1 
, (10)

here 

̃
 = 𝑫 + 𝜆BF 𝑰 , 

BF = 

tr 𝑫 

𝑀 

× 0 . 1 . 

 𝑛 is the 𝑀 × 1 leadfield vector for vertex 𝑛 . 𝑫 is the 𝑀 ×𝑀 covariance

atrix computed between all the sensor pairs. We imposed regulariza-

ion term 𝜆BF 𝑰 , assuming that in real data analyses covariance matrix 𝑫 

ften becomes rank deficient due to the noise reduction by independent

omponent analysis (ICA) and a common average referencing for EEG.
4 
n this study, LCMV beamformer indicates a scalar-type beamformer be-

ause we assumed a one-dimensional current dipole at each vertex. 

hVB provides a framework to use the prior information on the cur-

ent variance as soft constraints on the variance Sato et al. (2004) ;

oshioka et al. (2008) . It can use a variety of prior information, such

s the uniform distribution, the fMRI activity, and a meta-analysis of

MRI studies ( Suzuki and Yamashita, 2021 ). We used the uniform distri-

ution as prior information on the current variance to set a confidence

arameter, “bayes_parm.prior_weight, ” to 0.0001. This parameter con-

rols the confidence in the prior information relative to the amount of

ata samples (ranging from 0 to 1) ( Takeda et al., 2019 ). 

The estimated currents were averaged across the trials. 

.1.9. Evaluating the accuracy of estimated source currents 

For each condition (task, current estimation method, sensor array,

nd subject), we quantified the time-series accuracy of the estimated

urrents. At the sources, we calculated the correlation coefficients be-

ween the true and estimated currents and averaged them between

emispheres. 

.1.10. Statistical test 

We compared the time-series accuracy of SORM with those of the

niform and leadfield norm methods. For each task, sensor array, and

urrent estimation method, we performed a two-tailed Wilcoxon signed-

ank test under the null hypothesis where the medians of the correlation

oefficients were identical between SORM and the uniform/leadfield

orm methods. 

This is the multiple comparison problem, which we solved by con-

rolling the false discovery rate (FDR). FDR manages the expected pro-

ortion of false positive findings among all the rejected null hypotheses

 Benjamini and Hochberg, 1995 ). We estimated the 𝑞-values by Storey

nd Tibshirani’s method (2003) . From the distribution of the 𝑝 -values,

e first estimated the proportion of null 𝑝 -values 𝜋0 , and based on 𝜋0 we

onverted the 𝑝 -values to 𝑞-values. The FDRs were controlled at 0.01. 
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.1.11. Calculating contribution ratios in estimated source currents 

To identify the factors responsible for the time-series accuracy, we

xamined the contribution ratios in the estimated source currents. We

efined three kinds of contribution ratios: target, non-target, and noise.

he target contribution ratio is that of the component originated from

he left/right source in the estimated current at the left/right source;

t represents the purity of the estimated currents. The non-target con-

ribution ratio is that of the component originated from the right/left

ource in the estimated current at the left/right source; it represents the

mount of signal leakage into a source from another source. The noise

ontribution ratio is that of the components originated from the noise

 𝑬 in Eq. (1) ]. 

To calculate the contribution ratios, we decomposed the simulated

PM-MEG data into components originated from the left source, the

ight source, and the noise. We separately converted these components

nto cortical currents using the inverse filters from Section 3.1.8 . For the

eft source, the target contribution ratio was calculated by 

𝑟 target = 

𝑦 𝑙 

𝑦 𝑙 + 𝑦 𝑟 + 𝑦 𝑛 
, 

here 𝑦 𝑙 , 𝑦 𝑟 , and 𝑦 𝑛 are respectively the powers of the components origi-

ated from the left source, the right source, and the noise. The non-target

ontribution ratio was calculated by 

𝑟 non-target = 

𝑦 𝑟 

𝑦 𝑙 + 𝑦 𝑟 + 𝑦 𝑛 
. 

he noise contribution ratio was calculated by 

𝑟 noise = 

𝑦 𝑛 

𝑦 𝑙 + 𝑦 𝑟 + 𝑦 𝑛 
. 

n the same way, the contribution ratios were also calculated for the

ight source. Then, they were averaged between the left and right

ources. 

.2. Analyzing real OPM-MEG, SQUID-MEG, and EEG data 

For the realistic simulation test and applying SORM to real OPM-

EG data, we created and analyzed the OPM-MEG, SQUID-MEG, and

EG (OSE) dataset ( https://vbmeg.atr.jp/nictitaku209/ ), which con-

ains four subjects’ OPM-MEG, SQUID-MEG, and EEG data during four

asks: auditory, motor, somatosensory, and resting-state. It also contains

mpty-room OPM-MEG data. 

The four subjects participated in three recording sessions: OPM-

EG, SQUID-MEG and EEG, and MRI. The OPM-MEG data were

ecorded with 15 sensors (10 QZFM Gen-2 and five QZFM Gen-3, QuS-

in Inc., U.S.), each of which recorded a magnetic field along two

xes (Y and Z) (Supplementary material, SFig. 1). The SQUID-MEG

nd EEG data were simultaneously recorded with a whole-head 400-

hannel system (210-channel Axial and 190-channel Planar Gradiome-

ers; PQ1400RM; Yokogawa Electric Co., Japan) and a whole-head 63-

hannel system (BrainAmp; Brain Products GmbH, Germany). Electro-

culograms (EOGs) were also recorded simultaneously. 

We preprocessed the OPM-MEG, SQUID-MEG, and EEG data for esti-

ating the cortical currents. Because the OPM-MEG data contain large

uctuation below 8 Hz, we applied a lowpass filter at 40 Hz and a high-

ass filter at 8 Hz to all the data. Then we regressed out the EOG com-

onents from the data. For the EEG data, we took a common average

eference and made the averages of the EEG data across the channels to

. 

From T1 images, we constructed 1-shell (CSF) and 3-shell (CSF, skull,

nd scalp) head conductivity models for the MEG and EEG data. Based

n the models, we made leadfield matrices by solving the Maxwell equa-

ions with the BEM. Using the leadfield matrices, we estimated the cor-

ical currents from the preprocessed OPM-MEG data. We also estimated

he cortical currents from the SQUID-MEG and EEG (SQUID-MEG+EEG)

ata ( Takeda et al., 2019 ). 
5 
.3. Realistic simulation test 

We conducted a realistic simulation test in the same way as the sim-

le one except for procedures to simulate the brain activities and the

PM-MEG data. In this test, we simulated the former using the SQUID-

EG+EEG data during the auditory task and the latter using the SQUID-

EG+EEG data during the resting-state task and the empty-room OPM

ata. These procedures are described below. 

.3.1. Simulating brain activities 

To simulate realistic brain activities, we used the cortical currents

stimated from the SQUID-MEG+EEG data during the auditory task by

VB. We extracted currents at the left and right auditory cortices from

 subject’s cortical current. At the same sources as the simple simula-

ion test, we assigned the currents and spatially smoothed them using

 Gaussian filter whose SD was 6 mm. The amplitudes of the simulated

urrents were determined so that the reconstructed SQUID-MEG data

rom the simulated currents had the same amplitudes as the original

ne. 

.3.2. Simulating the OPM-MEG data 

To simulate realistic OPM-MEG data, we used the cortical currents

stimated from the SQUID-MEG+EEG data during the resting-state task

nd the empty-room OPM-MEG data. The OPM-MEG data was generated

y 

 = 𝑮 𝑱 + 𝑮 𝑱 𝑠 + 𝑬 

here 𝑱 is the simulated brain activity produced in Section 3.3.1 and

 𝑠 is the spontaneous brain activity. 𝑱 𝑠 was extracted from the cortical

urrents estimated from the SQUID-MEG+EEG data during the resting-

tate task by MNE. 𝑬 was generated from the empty-room OPM-MEG

ata. We generated surrogate data which had the same amplitude and a

imilar power spectrum with the preprocessed empty-room OPM-MEG

ata and used it as 𝑬 . 

Figure 3 shows the simulated brain activity and the sample OPM-

EG data at all the candidate positions. The SNRs of the OPM-MEG

ata were −18 . 52 ± 1 . 40 dB. 

.4. Applications to real OPM-MEG data 

Finally, we evaluated the efficacy of SORM using real OPM-MEG data

uring the auditory task. The OPM-MEG data were recorded with 30

hannels (15 sensors × 2 axes) (Supplementary material, SFig. 1). Here

e regarded the 30 channels as the candidates of pseudo sensors. From

hem, we selected sensors by the uniform, the leadfield norm, and the

ORM methods and estimated the cortical currents from the OPM-MEG

ata of the selected sensors. We quantified the time-series accuracy of

he estimated currents by comparing them with the cortical currents es-

imated from the identical subjects’ SQUID-MEG+EEG data during the

uditory task. For each subject and vertex, we calculated the correla-

ion coefficient of the cortical currents between the OPM and SQUID-

EG+EEG and averaged them within the ROIs (the early auditory cor-

ices). We did not conduct statistical tests because of the small sample

ize (four subjects). 

. Results 

.1. Simple simulation test 

To characterize the SORM behavior, we conducted a simple simula-

ion test. We assumed that the 16 subjects performed two tasks: motor

nd auditory. During them, magnetic fields normal to their scalp sur-

aces were recorded with OPM sensors. We set the ROIs to the primary

otor cortices for the motor task and the early auditory cortices for the

uditory task ( Fig. 4 A). 

https://vbmeg.atr.jp/nictitaku209/
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Fig. 3. Simulated brain activity and OPM-MEG 

data in realistic simulation test. ( A ) Simulated 

brain activity. Top figures show amplitude dis- 

tributions of simulated cortical current averaged 

across time. Values over 0.3 of their maximum 

value are shown. Bottom figures show time- 

series of simulated cortical current in left and 

right hemispheres. ( B ) Stimulus-triggered aver- 

age of sample OPM-MEG data at 102 candidate 

positions. 

Fig. 4. Sensor arrays designed by uniform, leadfield 

norm, and SORM with 10 sensors. ( A ) ROIs. ( B ) Sen- 

sor arrays. Red circles indicate selected sensor posi- 

tions. A subject’s results are shown. 
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Fig. 5. Properties of leadfield matrices. ( A ) Sensitivity to ROIs. ( B ) Effective 

rank. Thick lines and shaded areas represent averages and SDs of values across 

subjects. 

4

 

m  
.1.1. Designed sensor arrays 

Figure 4 B shows the sensor arrays designed by the uniform, leadfield

orm, and SORM methods with 10 sensors. Compared with the uniform

ethod, SORM prioritized the positions around the ROIs. On the other

and, compared with the leadfield norm method, SORM prioritized po-

itions far from the ROIs. 

To characterize the behaviors of these three methods, for each sensor

rray we examined the property of the leadfield matrix by two indices:

ensitivity to the ROIs and the effective rank. To obtain sensitivity to

he ROIs, we extracted from the leadfield matrix the submatrix corre-

ponding to the ROIs and calculated its Frobenius norm. The effective

ank represents the diversity of the sensitivity vectors across the selected

ensor positions. We estimated it based on the singular values of the

eadfield matrix ( Roy and Vetterli, 2007 ). 

Figure 5 shows the sensitivity to the ROIs and the effective rank for

ach sensor array. The uniform method showed high effective ranks but

ow sensitivities to the ROIs ( Fig. 5 , blue lines). In contrast, the leadfield

orm method showed high sensitivities to the ROIs but low effective

anks ( Fig. 5 , red lines). SORM showed both high sensitivities and high

ffective ranks ( Fig. 5 , green lines). These results indicate that SORM

elected sensor positions to increase both the sensitivity and the rank,

hile the other methods only increased one of them. 

To comprehend the rationale of this result, we expressed 𝒙 T 𝒙 using

he singular value decomposition (SVD) (Appendix B). It suggests that

ORM tends to select a sensor position whose sensitivity vector has large

alues at ROIs and is in the null space of the existing sensors’ leadfield

atrix, heightening the effective rank of the new sensor array. This sug-

estion is consistent with Fig. 5 . These results are intuitively interpreted

s follows: a new sensor should be sensitive to the ROIs and represent

utside of them to effectively suppress the signal leakage from the out-

ide. 
W  

6 
.1.2. Accuracy of estimated source currents 

For each sensor array, we simulated the OPM-MEG data and esti-

ated the cortical current with MNE, the LCMV beamformer, and hVB.

e evaluated the time-series accuracy of the estimated currents by the
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Fig. 6. Time-series accuracy of estimated source cur- 

rents in simple simulation test. For each subject, we 

calculated correlation coefficients between true and es- 

timated currents at left and right sources and averaged 

them between hemispheres. Thick lines and shaded 

areas represent averages and SDs of correlation coef- 

ficients across subjects. Asterisks indicate that corre- 

lation coefficients of SORM were significantly higher 

than those of uniform and leadfield norm methods 

( 𝑞 < 0 . 01 ). 
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orrelation coefficients between the true and estimated currents at the

ources. 

Figure 6 shows the time-series accuracy of the estimated currents.

or all the current estimation methods, SORM outperformed the uniform

nd leadfield norm methods, especially when we used few sensors ( < 15
ensors). This result indicates the efficacy of SORM for various current

stimation methods. 

On the other hand, when we used MNE and SORM, the time-series

ccuracy decreased as the number of sensors increased ( Figs. 6 A and

, green lines). This result indicates that using more sensors was not

lways better for MNE. 

.1.3. Contribution ratios in estimated source currents 

To interpret the time-series accuracy, we calculated the contribution

atios in the estimated source currents during the auditory task. Figure 7

hows the contribution ratios averaged across the subjects. The target

ontribution ratios highly correlated with the time-series accuracy (their

orrelation coefficients were 0 . 94 ± 0 . 03 ) ( Fig. 7 , blue areas). This result

uggests that the time-series accuracy mainly reflected the purity of the

stimated currents. 

When we used MNE, SORM drastically decreased the non-target con-

ribution ratios as the number of sensors increased ( Fig. 7 G, red area).

his result indicates that SORM effectively suppressed the signal leak-

ge and increased the time-series accuracy, suggesting the validity of its

lgorithm. 

On the other hand, when we used MNE and SORM, the time-series

ccuracy decreased as the number of sensors increased ( Figs. 6 A and

, green lines). The contribution ratios suggest that this was due to the

ncrease of the noise contribution ratios ( Fig. 7 G, green areas). As the

umber of sensors increased, SORM added sensor positions where the

ata had low SNR. This increased the noise contribution ratios and de-

reased the time-series accuracy. 

On the contrary, when we used the LCMV beamformer and hVB, the

ime-series accuracy did not greatly decrease ( Figs. 6 B, C, E, and F).

he contribution ratios suggest that the LCMV beamformer suppressed

he noise contribution ratios ( Figs. 7 B, E, and H, green areas), hVB sup-

ressed the non-target and noise contribution ratios ( Figs. 7 C, F, and I,

ed and green areas), and as a result their time-series accuracy did not

reatly decrease. 
7 
.2. Realistic simulation test 

To evaluate the efficacy of SORM for real OPM-MEG data, we con-

ucted a realistic simulation test. In it, we used the real data to simulate

he brain activities and noise. We used the same sensor arrays from the

imple simulation test ( Fig. 4 B) because we set the ROIs to the same ar-

as (the early auditory cortices) as the simple simulation test ( Fig. 4 A).

Figure 8 shows the time-series accuracy of the estimated currents.

ORM outperformed the other methods, especially when we used the

CMV beamformer and just a few sensors ( < 15 sensors). This tendency

eld unless the SNR was too low (Supplementary material, SFig. 2), in-

icating the efficacy of SORM for real OPM-MEG data. 

.3. Dependency on regularization constant 

SORM has a hyperparameter: the regularization constant [ 𝜆 in

q. (8) ], which was set to 𝜆0 [ Eq. (9) ] by default. We examined the

ependency of SORM on the regularization constant by changing the

egularization constant to 100 𝜆0 , 𝜆0 , and 0 . 01 𝜆0 . For each constant, we

esigned the sensor array for the auditory task by SORM, simulated the

PM-MEG data during the auditory task, estimated the current by MNE,

nd evaluated the time-series accuracy. 

Figure 9 shows the sensor arrays and the time-series accuracy for

ach regularization constant. They were almost the same across the con-

tants, indicating that SORM did not largely depend on the regulariza-

ion constant. 

.4. Application to real OPM-MEG data 

Finally, we applied SORM to the real OPM-MEG data during the au-

itory task. We regarded the 30 OPM channels as the candidates of the

seudo sensors and from them selected some sensors ( Fig. 10 A). From

he OPM-MEG data of the selected sensors, we estimated the cortical cur-

ents ( Fig. 10 B). The estimated currents at the ROIs (the early auditory

ortices) were compared with those estimated from the same subjects’

QUID-MEG+EEG data during the auditory task ( Fig. 10 C). 

Figure 10 D shows the similarity of the estimated currents. Even when

e used just a few pseudo sensors ( < 10 sensors), SORM showed high

imilarity comparable with the leadfield norm method. That is, even

ith few pseudo OPM sensors, the leadfield norm method and SORM
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Fig. 7. Contribution ratios in estimated source cur- 

rents of auditory task in simple simulation test. They 

were averaged across subjects. 

Fig. 8. Time-series accuracy of estimated source currents in realis- 

tic simulation test. For each subject, we calculated correlation coef- 

ficients between true and estimated currents at left and right sources 

and averaged them between hemispheres. Thick lines and shaded ar- 

eas represent averages and SDs of correlation coefficients across sub- 

jects. Asterisks indicate that correlation coefficients of SORM were 

significantly higher than those of uniform and leadfield norm meth- 

ods ( 𝑞 < 0 . 01 ). 
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nabled us to obtain the ROIs’ currents resembling those estimated from

 massive amount of data (400-ch SQUID-MEG and 63-ch EEG data).

his result also indicates the efficacy of SORM for real OPM-MEG data.

. Discussion 

In this study, we proposed a SORM algorithm to design an OPM sen-

or array for accurately estimating the activity of ROIs. It sequentially

elects sensor positions so that the resolution matrix of MNE has large

iagonal elements at the ROIs. This strategy made the leadfield matrix

ave a high effective rank as well as high sensitivity to the ROIs ( Fig. 5 ,

reen lines). Indeed, our mathematical consideration provided the ra-

ionale behind this result (Appendix B). Simulation tests showed that

he SORM yielded higher time-series accuracy than the other methods,

specially when we used a few sensors ( < 15 sensors) ( Figs. 6 and 8 ).

lthough SORM is based on MNE, the sensor arrays designed by SORM

orked well regardless of the current estimation methods ( Fig. 6 ). We

lso applied SORM to real OPM-MEG data and confirmed its efficacy for

eal data. These results suggest the efficacy of SORM when we want to

ccurately estimate ROIs’ activity with a limited number of OPM sen-

ors. 
i  

8 
.1. Methodological considerations 

SORM sequentially selects the sensor positions from their candidates

o that the MNE’s resolution matrix has large diagonal elements at the

OIs. This is a combinatorial optimization problem, which we solved by

 greedy algorithm. For example, when we select the 10 optimal sensor

ositions from the 102 candidates, we need to find one solution from

02 C 10 > 2 × 10 13 combinations. Note that SORM does not find the op-

imal solution; it provides a sub-optimal one. By using the recurrence

ormula of the resolution matrix [ Eq. (7) ], SORM approximately solves

his problem quickly. Indeed, it selected the 10 sensor positions from the

02 candidates within one minute using our computer [Intel(R) Xeon(R)

PU E5-2680 v2 @ 2.80GHz, 20 cores] and the selected positions out-

erformed those of the uniform and leadfield norm methods ( Figs. 6

nd 8 ). Since the SORM algorithm is very easy to implement, SORM is

ractical for a wide range of OPM users. 

To accurately estimate ROIs’ activities, SORM focuses on the diago-

al elements at them in the MNE’s resolution matrix and tries to increase

hem. However, this strategy also increased the non-diagonal elements

nd the diagonal elements (Supplementary material, SFig. 3), indicat-

ng that SORM enlarged the signal leakage into the ROIs as well as the
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Fig. 9. Dependency of SORM on regularization constant. For each regulariza- 

tion constant, sensor array designed with 10 sensors ( A ) and time-series accuracy 

of source currents estimated by MNE ( B ) are shown for auditory task. Thick lines 

and shaded areas represent averages and SDs of correlation coefficients across 

subjects. 
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9 
OIs’ activities. Nevertheless, SORM worked well in our simulation tests

nd applications to the OPM-MEG data ( Figs. 6–10 ). As the number of

ensors increased, the diagonal elements increased faster than the non-

iagonal elements at the ROIs (Supplementary material, SFig. 3). As a

esult, the time-series of the estimated currents at the ROIs became more

ccurate as the number of sensors rose. 

.2. Spatial accuracy of estimated cortical currents 

We focused on the temporal accuracy of the estimated cortical cur-

ents at ROIs and ignored their spatial accuracy. This is because SORM

ssumes that we have ROIs, meaning that we already know the infor-

ation of the source locations. In this case, since evaluating the spatial

ccuracy is not very meaningful, we focused on the temporal accuracy

nd optimized the SORM algorithm to increase it. 

On the other hand, the spatial accuracy of estimated currents has

een widely evaluated in source imaging studies by localization accu-

acy and spatial extent (e.g. Hauk et al., 2022; Sekihara et al., 2005 .

ollowing these studies, we also evaluated the spatial accuracy of the

stimated currents. SORM showed comparable spatial accuracy with the

niform and leadfield norm methods (Supplementary material, SFig. 4).

.3. Contribution ratios 

To identify the factors responsible for the time-series accuracy of the

stimated source currents, we examined the contribution ratios in the
Fig. 10. Application to real OPM-MEG 

data. ( A ) Sensor array of 10 pseudo sen- 

sors designed by SORM. ( B ) Cortical current 

estimated from OPM-MEG data at selected 

pseudo sensors ( A ). ( C ) Cortical current es- 

timated from SQUID-MEG+EEG data. In 

B and C , cortical currents during audi- 

tory task estimated by hVB are shown. 

Top figures show their amplitude distribu- 

tions averaged across time. Values over 0.3 

of their maximum value are shown. Bot- 

tom figures show time-series of currents at 

ROIs (early auditory cortices). In A –C , re- 

sults of a subject are shown. ( D ) Similar- 

ity of currents at ROIs between OPM and 

SQUID-MEG+EEG data. For each subject 

and vertex, we calculated correlation coeffi- 

cient of currents between OPM and SQUID- 

MEG+EEG data and averaged them within 

ROIs. Thick lines and shaded areas represent 

averages and SDs of correlation coefficients 

across subjects. 
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𝑹

urrents ( Fig. 7 ). The contribution ratios suggest that the time-series

ccuracy ( Fig. 6 ) mainly reflected the purity of the estimated currents

 Fig. 7 , blue areas). They also indicate that SORM effectively suppressed

he signal leakage in the currents estimated by MNE ( Fig. 7 G, red area)

nd increased their time-series accuracy ( Fig. 6 D, green line), suggesting

he validity of the SORM algorithm. 

On the other hand, the contribution ratios revealed differences across

he current estimation methods. For example, although the LCMV beam-

ormer and hVB showed comparable time-series accuracy ( Figs. 6 E and

, green lines), the contribution ratios identified different strategies. The

CMV beamformer achieved high accuracy by suppressing the noise

ontribution ratio ( Fig. 7 H, green area), and hVB achieved it by sup-

ressing the signal leakage ( Fig. 7 I, red area). In this way, the contri-

ution ratios highlighted the differences across the current estimation

ethods and helped us select the best method for our purpose. 

.4. Extended usages 

SORM uses MNE’s resolution matrix because it can be calculated

ithout MEG data [ Eq. (6) ]; that is, we do not need to conduct an MEG

xperiment in advance to design the sensor arrays. On the other hand,

e can calculate the resolution matrices for other current estimation

ethods, such as the LCMV beamformer. Such adaptive filter methods

eed MEG data to calculate their resolution matrices. For example, the

CMV beamformer needs a covariance matrix computed between all the

ensor pairs, and we need to estimate it by conducting a preparatory ex-

eriment or from existing data, such as open data. Once the covariance

atrix is obtained, we can apply the same greedy algorithm as SORM

 Section 2.3 ) except for steps 4 and 5. At these steps, instead of calculat-

ng 𝒙 ( 𝒏 ) T 𝒙 ( 𝒏 ) , we must calculate Eqs. (10) and (5) for each remaining

ensor position to find the position that maximizes the diagonal elements

t the ROIs in the resolution matrix. 

SORM assumes that each OPM sensor measures a magnetic field

long a single axis. However, current commercial OPM sensors can si-

ultaneously measure a magnetic field along two or three axes. Indeed,

he OPM-MEG data of the OSE dataset were recorded with the dual-axial

ensors. With tri-axial OPM sensors, we can estimate 3D magnetic field

ectors at the sensors. Furthermore, using tri-axial OPM sensors has the-

retical advantages for current estimation ( Brookes et al., 2021 ). SORM

an be easily extended for tri-axial OPM sensors. In this case, each sen-

or has three channels. Using SORM, we can rank all the channels and

he sensor positions based on the best channel in each sensor position

nd select the top 𝐾 sensor positions. 

.5. Applicability 

Since SORM designs the sensor arrays for accurately estimating ROIs’

ctivity, it is suitable when we know the ROIs, such as BCI and diagnos-

ng brain diseases. Recent proof-of-concept studies suggested the use-

ulness of OPM for non-invasive BCI ( Wittevrongel et al., 2021 ) and

iagnosing epilepsy ( Vivekananda et al., 2020 ). For such purposes, sim-

le MEG measurement systems with a few OPM sensors are practically

elpful. For BCI, by setting the ROIs to the motor cortices, SORM can

esign a sensor array to accurately estimate a subject’s motor intension.

or the diagnosis of brain diseases, by setting ROIs to such affected re-

ions as epileptic foci, SORM could design a sensor array to accurately

onitor their activities. 

Since SORM only relies on leadfield matrices [ Eq. (8) ], it can be ap-

lied to various problems where leadfield matrices (or forward models)

xist, such as designing sensor arrays of EEG and near-infrared spec-

roscopy (NIRS). SORM can be used not only for the brain but also for

he heart, muscles, and peripheral nerves, etc. For example, it could de-

ign an effective OPM sensor array for reconstructing cardiac activity

rom a magnetocardiography. 
10 
ata and code availability 

The data used in this study are publicly available from the multi-

ubject, multi-modal neuroimaging dataset (OpenNEURO ds000117-

1.0.1, https://openneuro.org/datasets/ds000117/versions/1.0.1/ )

nd the OSE dataset ( https://vbmeg.atr.jp/nictitaku209/ ). The

odes for performing SORM are available at https://github.com/

IKEN- AIP- CBDteam/Takeda2023 _ SORM . 
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ppendix A 

In this section, we derive Eq. (7) , which represents how the resolu-

ion matrix of MNE changes by adding a new sensor. Here we assume

hat each sensor has a single channel. 

We use the following notations and equations: 

1. 𝑀 : number of existing channels (sensors) 

2. 𝑁 : number of vertices 

3. 𝑮 : 𝑀 ×𝑁 leadfield matrix of existing sensors 

4. 𝒉 : 1 ×𝑁 sensitivity vector of a new sensor 

5. 𝑮 + : concatenated matrix of 𝑮 and 𝒉 ( 𝑮 + = [ 𝑮 ; 𝒉 ] in MATLAB nota-

tion) 

6. 𝑮 

T 
+ 𝑮 + = 𝑮 

T 𝑮 + 𝒉 T 𝒉 

7. 𝑪 = 𝑮 

T 𝑮 + 𝜆𝑰 

8. [ 𝑪 + 𝒉 T 𝒉 ] −1 = 𝑪 

−1 − 

𝑪 −1 𝒉 T 𝒉 𝑪 −1 

1+ 𝒉 𝑪 −1 𝒉 T 
[Derived from Eq. (11) in Faul and

Tipping (2001) 

9. 𝑹 = 𝑪 

−1 𝑮 

T 𝑮 : resolution matrix of existing sensors 

Using the above notations and equations, the resolution matrix after

dding a new sensor can be written: 

 + = 

[
𝑮 

T 
+ 𝑮 + + 𝜆𝑰 

]−1 
𝑮 

T 
+ 𝑮 + 

= 

[
𝑮 

T 𝑮 + 𝜆𝑰 + 𝒉 T 𝒉 
]−1 (

𝑮 

T 𝑮 + 𝒉 T 𝒉 
)

(Using the 6-th equation) 

= 

[
𝑪 + 𝒉 T 𝒉 

]−1 (
𝑮 

T 𝑮 + 𝒉 T 𝒉 
)

(Using the 7-th equation) 

https://openneuro.org/datasets/ds000117/versions/1.0.1/
https://vbmeg.atr.jp/nictitaku209/
https://github.com/RIKEN-AIP-CBDteam/Takeda2023_SORM
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( 

𝑪 

−1 − 

𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 

1 + 𝒉 𝑪 

−1 𝒉 T 

) (
𝑮 

T 𝑮 + 𝒉 T 𝒉 
)

(Using the 8-th equation) 

= 𝑪 

−1 𝑮 

T 𝑮 + 𝑪 

−1 𝒉 T 𝒉 − 

𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 𝑮 

T 𝑮 

1 + 𝒉 𝑪 

−1 𝒉 T 
− 

𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 𝒉 T 𝒉 

1 + 𝒉 𝑪 

−1 𝒉 T 

= 𝑹 + 𝑪 

−1 𝒉 T 𝒉 − 

𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 ( 𝑪 − 𝜆𝑰 ) 
1 + 𝒉 𝑪 

−1 𝒉 T 
− 

𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 𝒉 T 𝒉 

1 + 𝒉 𝑪 

−1 𝒉 T 

(Using the 9-th equation) 

= 𝑹 + 𝑪 

−1 𝒉 T 𝒉 − 

𝑪 

−1 𝒉 T 𝒉 − 𝜆𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 + 𝒉 𝑪 

−1 𝒉 T 𝑪 

−1 𝒉 T 𝒉 

1 + 𝒉 𝑪 

−1 𝒉 T 

= 𝑹 + 𝑪 

−1 𝒉 T 𝒉 − 

(
1 + 𝒉 𝑪 

−1 𝒉 T 
)
𝑪 

−1 𝒉 T 𝒉 − 𝜆𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 

1 + 𝒉 𝑪 

−1 𝒉 T 

= 𝑹 + 

𝜆𝑪 

−1 𝒉 T 𝒉 𝑪 

−1 

1 + 𝒉 𝑪 

−1 𝒉 T 
. 

ppendix B 

To understand which kind of sensor position maximizes 𝒙 T 𝒙 , we ex-

ress it by the singular vectors of the leadfield matrix of the existing

ensors. We use the same notations and equations as in Appendix A. For

implicity, we set the ROIs to the whole brain. 

SVD decomposes the leadfield matrix of existing sensors 𝑮 as 

 = 𝑼 𝚺𝑽 T , 

here 𝑼 is an 𝑀 ×𝑀 orthogonal matrix, 𝚺 is an 𝑀 ×𝑁 rectangular

iagonal matrix, and 𝑽 is an 𝑁 ×𝑁 orthogonal matrix. By using 𝑮 =
 𝚺𝑽 T , 𝑪 and 𝑪 

−1 can be written as 

 = 𝑮 

T 𝑮 + 𝜆𝑰 

= 𝑽 ( 𝚺T 𝚺 + 𝜆𝑰 ) 𝑽 T 

nd 

 

−1 = 𝑽 ( 𝚺T 𝚺 + 𝜆𝑰 ) −1 𝑽 T . 

ain vector 𝒙 can be written as 

 = 𝑪 

−1 𝒉 T 

= 𝑽 ( 𝚺T 𝚺 + 𝜆𝑰 ) −1 𝑽 T 𝒉 T . 

onsequently, we obtain 

 

T 𝒙 = 𝒉 𝑽 ( 𝚺T 𝚺 + 𝜆𝑰 ) −2 𝑽 T 𝒉 T 

= 

𝑁 ∑
𝑛 =1 

( 

𝒉 𝒗 𝑛 

𝜎2 
𝑛 
+ 𝜆

) 2 

, 

here 𝒗 𝑛 is the 𝑛 -th column vector in 𝑽 , 𝒉 𝒗 𝑛 is the dot product of 𝒉

nd 𝒗 𝑛 , 𝜎𝑛 is the 𝑛 -th diagonal element in 𝚺, and 𝜎𝑛 = 0 if 𝑛 > 𝑀 . 𝒗 𝑛 and

𝑛 represent the orthogonal basis and its scale in 𝑮 . Because 𝜎𝑛 = 0 for

 > 𝑀 , 𝒗 𝑀+1 , ⋯ , 𝒗 𝑁 

represent the null space of 𝑮 . 

The above equation suggests that 𝒙 T 𝒙 increases in the following two

ases: 

• 𝒉 is large; that is, a sensor position has high sensitivity to the ROIs. 
• 𝒉 𝒗 𝑛 is large when 𝜎𝑛 = 0 ; that is, the sensitivity vector of a sensor

position is in the null space of the leadfield matrix of the existing

sensors. 
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