
Extracting a stimulus-unlocked component from EEG during NoGo
trials of a Go/NoGo task

Yusuke Takeda, Kentaro Yamanaka, Daichi Nozaki, and Yoshiharu Yamamoto⁎

Educational Physiology Laboratory, Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received 22 October 2007; revised 5 March 2008; accepted 10 March 2008
Available online 20 March 2008

Like electroencephalographic (EEG) activity during reaction time
tasks, EEG activity during tasks without overt responses may also
consist of two components: stimulus-locked and -unlocked compo-
nents. The extraction of such stimulus-unlocked components has been
difficult owing to the unknown delays. Here, we propose a novel
method to extract both of the two components from single-channel
EEG epochs. In this method, we initially set random values for the
delays and extract uncontaminated stimulus-locked and -unlocked
components using the preset delays and a discrete Fourier transform.
Then, we reconstruct the EEG by overlapping the extracted com-
ponents with the preset delays, and calculate the residual errors
between the reconstructed and original EEG. This procedure is
repeated by updating the delays until the residual errors become
adequately small. After verifying the performance of this method by
two kinds of simulations with artificial and EEG data, we apply the
method to EEG during NoGo trials of a Go/NoGo task, and obtain the
stimulus-unlocked components, the magnitudes of which are compar-
able with those of the stimulus-locked components. By applying this
method, it is possible to study internal and subjective brain activity,
which occurs with variable delays.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

When a subject responds overtly to a stimulus, brain activity
consists of two components: a component time-locked to the
stimulus, i.e., a stimulus-locked component, and a component not
time-locked to the stimulus but to the response, i.e., a response-
locked component (Braun et al., 2002; Endo et al., 1999; Goodin
et al., 1986; Jung et al., 2001; Lamarre et al., 1983; Nelson, 1987;

Nelson et al., 1991; Perfiliev, 1998; Tanji and Kurata, 1982). In the
human scalp electroencephalography (EEG) studies, these compo-
nents are conventionally extracted by averaging EEG epochs with
respect to either stimulus or response onset to increase the signal to
noise ratio (SNR). However, when the two components are tem-
porally overlapping, the two components are mutually contami-
nated by the averaging procedure (Kok, 1988; Verleger, 1988;
Verleger et al., 2006). To solve this problem, we recently proposed
a method to extract the uncontaminated components from each
channel of EEG epochs and reaction times (RTs) (described in the
Methods section), and applied the method to the EEG during an
auditory simple reaction time task (Takeda et al., 2008).

However, even when a subject does not respond overtly to a
stimulus, EEG activity may exhibit two components: a stimulus-
locked component, and a component not time-locked to the
stimulus but to a certain event in the brain (David et al., 2006;
Haenschel et al., 2000; Schürmann and Başar, 2001; Tallon-Baudry
et al., 1996; Tallon-Baudry and Bertrand, 1999); here, the latter is
called the stimulus-unlocked component, defined as the EEG
component which has a fixed waveform and of which the delay
fluctuates from trial to trial. However, such a stimulus-unlocked
component cannot be extracted by the averaging procedure, or
even by our previous method (Takeda et al., 2008), because its
delays in individual trials are of unknown length. Although, using
time-frequency analyses, some studies indicate that EEG activity
during various cognitive tasks involves some stimulus-unlocked
oscillatory components together with stimulus-locked components
(David et al., 2006; Haenschel et al., 2000; Jung-Beeman et al.,
2004; Kirmizi-Alsan et al., 2006; Tallon-Baudry et al., 1996;
Tallon-Baudry and Bertrand, 1999), suggestive of the presence of
the stimulus-unlocked components, their waveforms and the delays
of individual trials have not been identified. Because the brain
activity related to a complex function, e.g., attention, memory and
problem solving, occurs in a stimulus-unlocked way, it is important
to develop a method for extracting the waveform and delays of the
stimulus-unlocked brain activity.

In this paper, we thus propose a novel method to estimate the
delays of the stimulus-unlocked component, and to extract the
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stimulus-locked and -unlocked components only from single-
channel EEG epochs. In this method, the delays are estimated by
solving an optimization problem, in which our previous method
(Takeda et al., 2008) is used for decomposing EEG into the two
components. We examine the performance of this method by two
types of simulation tests with artificial and EEG data respectively.
Then, we apply this method to EEG data during NoGo trials of a
Go/NoGo task, in which subjects are instructed to withhold a
response.

Methods

Extraction of stimulus-locked and -unlocked components

It is assumed that brain activity during a cognitive task consists
of stimulus-locked activity, stimulus-unlocked activity shifted by a
delay of unknown length, and noise. Therefore, observed single-
channel EEG data can be expressed by:

yn tð Þ ¼ s tð Þ þ r t % snð Þ þ vn tð Þ t ¼ 0; N ; T % 1; n ¼ 1; N ;Nð Þ;
ð1Þ

where yn(t): observed EEG data in trial n; s(t): stimulus-locked
component; r(t): stimulus-unlocked (or response-locked, if there is
an overt response) component; τn: delay of r(t) in trial n; vn(t):
noise in trial n. Here, the objective is to obtain s(t), r(t) and τn only
from yn(t).

Once a set of delays τ=[τ1,τ2, N , τN] is determined, the
waveforms of s(t) and r(t) are determined by our previous method
(Takeda et al., 2008). In our previous method, to extract s(t) and r(t)
separately, Eq. (1) and the average across n of Eq. (1) are solved
simultaneously for s(t) and r(t) in the Fourier domain, and the

solutions are averaged across n. As a result, s(t) and r(t) extracted by
using τ are respectively expressed by:

ss tð Þ ¼ IDFT
1
N

XN

n¼1

exp %i2pxsn=Tð ÞPY xð Þ % P
E xð ÞYn xð Þ

D n;xð Þ

" #

;

ð2Þ

rs tð Þ ¼ IDFT
1
N

XN

n¼1

Yn xð Þ % P
Y xð Þ

D n;xð Þ

" #

; ð3Þ

where

D n;xð Þ ¼ c x ¼ 0
exp %i2pxsn=Tð Þ % P

E xð Þ x p 0
;

!
ð4Þ

Yn(ω): discrete Fourier transform of yn(t);Y
−(ω): average across n of

Yn(ω); E
−(ω): average across n of exp(− i2πωτn /T); IDFT[U]: inverse

discrete Fourier transform of U; c in Eq. (4): a constant number, being
set to unity in this study (see Takeda et al., 2008, for detailed
descriptions).

We estimate true τ under a certain assumption. Fig. 1 shows
the simulation results on which the assumption is based. If τ is
true, the waveforms of sτ(t) and rτ(t) are close to those of s(t) and
r(t) (Fig. 1, C), and the waveform of sτ(t) + rτ(t− τn) becomes
close to yn(t) (Fig. 1, E). In contrast, if τ is wrong, the wave-
forms of sτ(t) and rτ(t) are not close to those of s(t) and r(t)
(Fig. 1, D), and the waveform of sτ(t) + rτ(t− τn) does not become
close to yn(t) (Fig. 1, F). Based on these simulation results, we
assume that sets of nearly true delays provide better approxima-
tions of the observed EEG data than sets of wrong delays. Under

Fig. 1. Simulation results on which the proposed method is based. (A) Original stimulus-locked component (top), original stimulus-unlocked component
(middle), and noise (bottom). (B) Simulated data obtained by Eq. (1). (C) Stimulus-locked component (top) and stimulus-unlocked component (bottom)
extracted by our previous method using the true s (Takeda et al., 2008). The waveforms of these components are similar to those of the original ones.
(D) Stimulus-locked component (top) and stimulus-unlocked component (bottom) extracted by our previous method using the wrong s (Takeda et al., 2008). The
waveforms of these components are different from those of the original ones. (E) Reconstructed data from the components extracted by the true s. Its waveform is
similar to that of the simulated data (top row in B). (F) Reconstructed data from the components extracted by the wrong s. Its waveform is different from that of
the simulated data (top row in B).
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this assumption, we estimate the true τ by solving an optimization
problem of:

Minimize os ¼
Xt2

t¼t1

XN

n¼1

yn tð Þ % ss tð Þ % rs t % snð Þf g2

Subject to soN :

In this study, t1 and t2 were respectively set at 0 and 1000 ms
after the stimulus onset.

To select algorithms for solving this optimization problem, by
using simulated data (not shown), we checked the structure of the
objective function by changing τk (k was fixed) one step at a time.
Consequently, as the objective function seemed to have many
local minima, hill-climbing methods, such as the steepest descent
method, are not suitable because these methods are easily trapped in
a local minimum. Stochastic algorithms, such as simulated an-
nealing (Kirkpatrick et al., 1983), are thus considered suitable
because these methods can escape from a local minimum and find
a global minimum. Among the algorithms we tested, a random
search (Zhigljavsky, 1991) is the best in the points that this algorithm
achieves speedy convergence to a global minimum with a high
probability. The procedure of the random search is as follows:

1. Generate a set of delays τ by random numbers, and set the index
of the delays k to 1.

2. Obtain oτ.
3. Make τ′ by changing τk in τ randomly.
4. Obtain oτ′.
5. Replace τ and oτ by τ′ and oτ′ respectively if oτ′ is smaller

than oτ.
6. Return to step 3 with increasing k by 1 (k returns to 1 if k

becomes larger than N).

This procedure is different from the so-called general random
search (Zhigljavsky, 1991) in the point that, at step 3 in each
iteration, this procedure does not change all of the τn(n=1, N , N),
but only one τk, where k circulates from 1 to N as the iteration
number increases.

By using yn(n=1, N , N) shown in Fig. 1, B, we demonstrate the
performance of the random search in Fig. 2. Fig. 2, A, shows how
the values of the objective function decrease within the same

computational time (10 s) by the following four algorithms: the
random search, a more general random search (Zhigljavsky, 1991)
where the procedure was the same as one we used except for making
τ′ by random numbers at step 3, a genetic algorithm (Holland, 1975)
and simulated annealing (Kirkpatrick et al., 1983). The convergence
of the random search is the fastest among these (Fig. 2, A). Fig. 2, B,
shows the converged points by 2000 [=20×N(N=100)] iterations of
the random search, taking about 13 s by our personal computer [Dell
XPS M1210 Intel(R) Core(TM)2 CPU T7200 at 2.00 GHz]. The
2000 iterations were repeated 100 times with different initial τ at
step 1. Among the 100 converged points, 54 points (encircled points
in Fig. 2, B) reached values smaller than 200, and the correlation
coefficients between the estimated and original delays were higher
than 0.94. This indicates that the random search achieves con-
vergence to a global minimum with a probability of about 0.5, being
adequately high for practical use.

In the optimization, we firstly repeated 20×N iterations of the
random search for 50 times, and obtained 50 sets of τ and oτ. Then,
we started 20×N iterations from the τ which had the smallest oτ
among the 50 sets.

During the optimization, we monitored the variance across n of
yn(t)− sτ(t)− rτ(t− τn), which became smaller and smaller as the
optimization proceeded, and stopped the optimization if the var-
iance became smaller than those of the pre-stimulus level. This is
because yn(t)− sτ(t)− rτ(t− τn) is considered as the extracted back-
ground noise and the level of original background noise is con-
sidered not to decrease after stimulus onsets.

After the optimization, we adjusted the average of the obtained
τ. This adjustment is required because the average of τ varies
depending on the time point defined as the onset of the stimulus-
unlocked component and the onset is arbitrarily determined in the
optimization. For example, we adjusted the average of τ obtained
from the EEG during NoGo trials so that the maximum peaks in
the extracted stimulus-unlocked components became their onsets
(described in the Data analysis subsection). We then called the
adjusted τ the estimated delays.

Simulation tests

To examine the performance of the proposed method for
artificial and EEG-like data, we conducted two simulation tests: a
simulation with artificial data and a simulation with EEG data.

Fig. 2. Performance of a random search. (A) Decay of the values of the objective function by the restricted random search proposed (thick solid line), completely
random search (thin solid line), genetic algorithm (thick dotted line), and simulated annealing (thin dotted line). (B) Scatter plots of the converged values of the
objective function and the correlation coefficients between the estimated and original delays by the restricted random search. Encircled dots indicate the
converged points whose values of the objective function are lower than 200.
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In the simulation with artificial data, original s(t) and r(t) were
generated by the exponential and the cosine functions respectively
(Fig. 1, A). Gaussian random numbers [mean=270 ms, standard
deviation (SD)=50 ms] were used as τ, and white noise was used as
vn(t). To examine the relation between the accuracy of the estimated
τ and noise level, we generated 11 sets of yn(t)(n=1, N , 100) with
different SNRs of −10.−9, N , 0 by adjusting SD of vn(t) to 0.56, 0.50,
0.45, 0.39, 0.36, 0.32, 0.28, 0.25, 0.22, 0.20, 0.18, respectively. The
SNR was defined as 10 log 10

PT%1
t¼0 r tð Þ2=

PT%1
t¼0 vn tð Þ2

" #
:

In the simulation with EEG data, the stimulus- and response-
locked components extracted by our previous method (Takeda
et al., 2008) from all the subjects' EEG and RTs during Go trials in
the Go/NoGo task (described in Experimental procedure and Data
analysis subsections) were used as s(t) and r(t) respectively, and the
RTs, which were randomly selected from all the subjects' RTs
during Go trials, were used as τ. Noise vn(t)(n=1, N , 100) was
obtained from all the subjects' EEG during a passive viewing task
(described in Experimental procedure and Data analysis subsec-
tions) in the following way. The averaged EEG across trials was
subtracted from each of the sets of EEG data, and the resultant
EEG was discrete Fourier transformed and new sweeps were
constructed by randomizing the phase information of the
transformed EEG, while keeping their distributions constant. From
the sweeps obtained, we randomly selected 100 sweeps, and used
them as vn(t)(n=1, N , 100). To examine the relation between the
accuracy of the estimated τ and the noise level, we generated 11
sets of yn(t)(n=1, N , 100) with different SNRs of −10, −9, N , 0 by
adjusting SD of vn(t) to 2.6, 2.3, 2.0, 1.8, 1.6, 1.4, 1.3, 1.2, 1.0,

0.91, 0.81, respectively. Without the adjustment, SD of vn(t) was
6.8 and the SNR was −18.

Because our method uses a stochastic algorithm (the random
search) in the optimization, the estimation results should vary more
or less in every estimation. To examine the robustness of the
estimation results, we applied the proposed method to each set of
yn(t)(n=1, N , 100) for 10 times, and obtained 10 sets of τ, sτ(t) and
rτ(t) for each set. Because the averages of τ were arbitrarily
determined in the optimization, we adjusted the averages of τ to
those of the original τ. The accuracy of the estimated τ was
quantified by the correlation coefficient between the estimated and
original τ (Figs. 3 and 4, D). Also, the similarity of the extracted
component to the original one was quantified by the correlation
coefficient between them, corresponding to the cross correlation
between them at the lag of zero.

Experimental procedure

Nine healthy adults (aged 28.4±3.7 years) constituted the
experimental population. All the subjects gave their informed
consent and the local ethics committee approved the experimental
procedure.

The subjects were comfortably seated on a chair in a dimly
lit, electrically shielded room. At about 50 cm in front of the
subjects' eyes, red and green light-emitting diodes (LEDs) for
imperative signals were vertically arrayed 1.5 cm apart on a
black panel. The subjects were instructed to perform two kinds
of tasks in the following order: a Go/NoGo task and a passive

Fig. 3. Simulation with artificial data. (A–C) Examples of the extracted components and the estimated delays when the SNR is set to zero. (A) Extracted
stimulus-locked component (solid line) and original one (dotted line). (B) Extracted stimulus-unlocked component (solid line) and original one (dotted line). The
horizontal axis represents relative time to the defined onsets of the stimulus-unlocked component. (C) Scatter plot of the estimated and original delays. (D)
Correlation coefficients between the estimated and original delays for each SNR. The diamonds and error bars respectively represent the means and SDs of the
correlation coefficients.
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viewing task. In the Go/NoGo task, the subjects undertook four
experimental blocks, each consisting of 50 trials. The subjects
were instructed to push a button immediately after a “Go” signal
(green LED) or not to push it after a “NoGo” signal (red LED).
The green or red LED was illuminated in random order with
almost equal probability. In two blocks, the subjects had to
respond with their right index finger, and in the other two blocks
with their left index finger. In an off-line analysis, the data
from the blocks of right and left fingers were mixed. In the
passive viewing task, the subjects undertook two experimental
blocks, each consisting of 50 trials. The subjects were instructed
passively to view the same stimulus as in the Go/NoGo task. In
both tasks, each trial began with a warning signal (a beep),
followed, after a variable delay of 1.8–2.2 s, by the imperative
signals (duration: 500 ms). Inter-trial intervals were randomized
from 3.5 to 7.5 s.

During the tasks, surface EEG was recorded from 19-ch tin
electrodes, mounted in a cap (Electro-Cap International, Inc.,
Eaton, Ohio, USA) according to the International 10–20 system,
referred to a tin electrode placed on AFz. The EEG was amplified
on a Nihon Kohden EEG-1100 with a time constant of 0.3 s.
Because we expected that large EEG activity related to the task
execution would not appear around the earlobes, we placed Ag/
AgCl electrodes on both earlobes and recorded their potentials
separately. Their averaged potentials were subtracted from the EEG
data off-line. For monitoring eye movements, an electrooculogram
(EOG) was recorded with a pair of Ag/AgCl electrodes placed
above and below the left eye. The sampling rate of the EEG and
EOG was 1000 Hz.

Data analysis

In an off-line analysis, we resampled the EEG data at a rate of
100 Hz. Because our previous method has the technical limitation
that slow waves (~1 Hz) in the background EEG activity are
amplified by the decomposition (Takeda et al., 2008), the EEG data
were filtered with a bandpass of 2–40 Hz by using two kinds of
finite impulse response (FIR) filters: a high-pass of 2 Hz (300-
point, −26 dB at 1 Hz) and a low-pass of 40 Hz (15-point, −45 dB
at 50 Hz). Then, the filtered EEG data were segmented into 2 s
epochs from −500 to 1500 ms after stimulus onsets.

Reaction times of Go trials were defined as the intervals be-
tween the stimulus onset and the button push signal onset. We
excluded Go trials with the RT either shorter than 100 ms or longer
than 400 ms, and excluded NoGo trials with responses. An artifact
criterion of ±50 μV was used for the EEG and EOG to reject trials
with excess ocular artifacts or measurement noise. The numbers of
trials obtained per subject were 77±12 for Go trials, 87±13 for
NoGo trials, and 78±25 for the passive viewing task.

Application to EEG during Go trials

Because the EEG during Go trials consists of the stimulus- and
response-locked components, i.e., the stimulus-locked and -unlocked
components, it is expected that our method can estimate the RTs, i.e.,
the delays of the stimulus-unlocked component. To test this, we
applied the proposed method to the individual subject's EEG data at
Cz during Go trials for 10 times, and obtained 10 sets of estimated
RTs. In estimating the RTs, we set the range of the RTs at the width of

Fig. 4. Simulation with EEG data. (A–C) Examples of the extracted components and the estimated delays when the SNR is set to zero. (A) Extracted stimulus-
locked component (solid line) and original one (dotted line). (B) Extracted stimulus-unlocked component (solid line) and original one (dotted line). The
horizontal axis represents relative time to the defined onsets of the stimulus-unlocked component. (C) Scatter plot of the estimated and original delays.
(D) Correlation coefficients between the estimated and original delays for each SNR. The diamonds and error bars respectively represent the means and SDs of
the correlation coefficients.
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300 ms. The accuracy of the estimated RTs was quantified by the
correlation coefficient between the estimated and real RTs.

Check for existence of stimulus-unlocked component in EEG
during NoGo trials

Although the proposed method assumes that EEG activity con-
sists of the stimulus-locked and -unlocked components, the validity
of this assumption, especially the existence of the stimulus-unlocked
component, is not always guaranteed at least for the EEG during
NoGo trials of the Go/NoGo task. As an alternative assumption, we
might also consider that the EEG during NoGo trials includes
only the stimulus-locked component. Therefore, in order to check
whether the EEG included the stimulus-unlocked component or not,
we examined the time course of the EEG variance across trials.

Suppose that the background noise is a stationary process, from
the assumption of Eq. (1), the EEG variance across trials Var[y(t)]
is approximately expressed by:

Var y tð Þ½ 'c 1
N

XN

n¼1

r t % snð Þ % 1
N

XN

n¼1

r t % snð Þ
" #2

þ Var v½ '; ð5Þ

where Var[v] represents the variance of noise across trials. From
Eq. (5), if the stimulus-unlocked component does not exist, the
EEG variance is expressed by:

Var y tð Þ½ 'cVar v½ ': ð6Þ

Eqs. (5) and (6) indicate that the time courses of the EEG
variance are qualitatively different depending on whether the
stimulus-unlocked component exists or not. If the stimulus-
unlocked component exists, the variance should increase and
decrease after stimulus onset because of the trial-to-trial variability
in its delays. In contrast, if the stimulus-unlocked component does
not exist, the variance should be constant. Therefore, we checked
the existence of the stimulus-unlocked components by examining
the time course of the EEG variance across trials (Fig. 5).

Application to EEG during NoGo trials

Because the variance of the EEG during NoGo trials at C3, C4,
Fz and Cz showed a transient increase (Fig. 5), we applied the
proposed method to these EEG data. We obtained the stimulus-

locked components, the stimulus-unlocked components and the
delays for each subject and each channel. In estimating the delays,
we set their range at the width of 400 ms, because the EEG
variance was significantly greater than the pre-stimulus level for
about 400 ms after the stimulus onset (pb0.05, Wilcoxon signed-
rank test).

To examine the robustness of the estimated delays, we
repeated the estimation of the delays 10 times for the same EEG
data, and obtained 10 sets of delays. The robustness was checked
in the following way. First, we calculated the correlation coeffi-
cient between each set and the average of the other sets, and
obtained the 10 correlation coefficients. Then, we conducted a
two-tailed Wilcoxon signed-rank test to assess the null hypoth-
esis that the correlation coefficients did not differ from zero. If
the null hypothesis was not rejected at the alpha level of 0.05, we
regarded the SNR of the EEG not to be high enough to estimate
the delays robustly and excluded the EEG data from the fol-
lowing analyses. If the null hypothesis was rejected, we regarded
the estimation results to be robust and, in the following analyses,
used the set of delays whose correlation coefficient was the
highest. As a result, we obtained the delays of 6 sets for C3, 6
sets for C4, 7 sets for Fz, and 6 sets for Cz, from the 9 subjects'
EEG data during NoGo trials.

We adjusted the average of the delays so that the estimated
delays represented latencies of the same peaks in the extracted
stimulus-unlocked components across subjects. First, we set a
subject's stimulus-unlocked components as references, and shifted
the other subjects' delays and the stimulus-unlocked components
so that their values of the cross-correlations with the references
became maximum at the lag of zero. Then, we shifted all the
subjects' delays so that the delays represented latencies of the
maximum peaks in the average stimulus-unlocked components of
all the subjects.

After the estimation, to examine the validity of the estimated
delays, we formed time-trial images (Jung et al., 2001) of the EEG
during NoGo trials sorted by the estimated delays (Fig. 6). In these
images, all the subjects' EEG epochs were smoothed vertically with
a 15-trial moving average, and the potential fluctuations were
shown as color-coded horizontal lines. If the estimated delays are
valid, both the stimulus- and estimated delay-locked fluctuations
should appear, whereas, if the estimated delays are wrong, only the
stimulus-locked fluctuations should appear, as shown in the left
panel in Fig. 6. Therefore, we examined whether the estimated

Fig. 5. Time course of the EEG variance across trials at C3, C4, Fz and Cz obtained from all the subjects' EEG. Thick lines represent the EEG variance during
NoGo trials; thin lines represent the EEG variance during the passive viewing task.
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delay-locked fluctuations appeared or not in the time-trial images
of the EEG sorted by the estimated delays.

The similarity of the extracted components across subjects was
quantified by calculating the correlation coefficient between a
subject's component and the other subjects' average component for
each subject, corresponding to the cross-correlation between the
two waveforms at a lag of zero. As for the stimulus-locked com-
ponents, the similarity of the extracted component to the stimulus-
triggered average EEG was also quantified by the correlation co-
efficient between them. A two-tailed Wilcoxon signed-rank test
was conducted to assess the null hypothesis that the correlation
coefficients obtained from individual subjects did not differ from
zero. An alpha level of 0.05 was used for the statistical tests.

Results

Simulation tests

Fig. 3 shows the results of the simulation test with artificial data.
Examples of the extracted components and estimated delays from the
simulated data with a SNR of 0 are shown in Fig. 3, A–C. The
extracted stimulus-locked components are highly correlated with the
original one (r=0.96) (Fig. 3, A), as are the extracted stimulus-
unlocked components (r=0.93) (Fig. 3, B). The estimated delays are
significantly correlated with the original ones (r=0.99, pb0.05,
slope=0.96) (Fig. 3, C). This indicates that the performance of the
method is adequately accurate when the SNR is 0. The correlation
coefficients between the original and estimated delays from the
simulated data with a SNR of −10, N , 0 are shown in Fig. 3, D. For a
SNR≥−7 (SD of the noise ≤0.39), the correlation coefficients are high
in all the repeated estimations (Fig. 3, D), indicating that the estimation
is adequately accurate and robust when the SNR is high. In contrast,
for a SNRb7 (SD of the noise N0.39), the correlation coefficients are
low and variable across the repeated estimations (Fig. 3, D), indicating
that the estimation is neither accurate nor robust when the SNR is low.

Fig. 4 shows the results of the simulation test with EEG data.
Examples of the extracted components and estimated delays from
the simulated data with a SNR of 0 are shown in Fig. 4, A–C. The
extracted stimulus-locked components are highly correlated with
the original one (r=0.94) (Fig. 4, A), as are the extracted stimulus-
unlocked components (r=0.89) (Fig. 4, B). The estimated delays
are significantly correlated with the original ones (r=0.94, pb0.05,
slope=0.78) (Fig. 4, C). This indicates that the performance of the
method is adequately accurate when the SNR is 0. The correlation
coefficients between the original and estimated delays from the

simulated data with a SNR of −10, N , 0 are shown in Fig. 4, D. For
a SNR≥−4 (SD of the noise ≤1.3), the correlation coefficients are
high in all the repeated estimations (Fig. 4, D), indicating that the
estimation is adequately accurate and robust when the SNR is high.
In contrast, for a SNRb−4 (SD of the noise N1.3), the correlation
coefficients are low and variable across the repeated estimations
(Fig. 4, D), indicating that the estimation is neither accurate nor
robust when the SNR is low.

Estimation of RTs in Go trials

Table 1 shows the correlation coefficients between the real and
estimated RTs from the individual subjects' EEG at Cz during Go
trials by the proposed method. For Subjects 4 and 5, the estimated
RTs are highly correlated with the real RTs (Table 1). For the other
subjects, however, the estimated RTs are not correlated with the
real RTs (Table 1).

Testing assumption for EEG during NoGo trials

Fig. 5 shows the time courses of the EEG variance during NoGo
trials of the Go/NoGo task obtained from all the subjects' EEG. The
variance of the EEG at C3, C4, Fz and Cz during NoGo trials shows
transient increases during 300–500 ms after the stimulus onset
(Fig. 5). In contrast, the variance is almost constant for the EEG
during the passive viewing task (Fig. 5). This suggests that the EEG
at these channels during NoGo trials includes the stimulus-unlocked
component, whereas the EEG during the passive viewing of the
same stimulus does not. Therefore, we apply our method to the EEG
at C3, C4, Fz and Cz during NoGo trials.

Decomposing EEG during NoGo trials

Then, we obtain the stimulus-locked components, stimulus-
unlocked components and the delays for individual EEG channels

Table 1
Correlation coefficients (r) between the estimated and real RTs in Go trials

Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5

r −0.39±0.061 0.017±0.092 0.042±0.15 0.37±0.16 0.69±0.043

Subj. 6 Subj. 7 Subj. 8 Subj. 9

r −0.097±0.11 −0.22±−0.25 0.17±0.23 −0.018±0.11

Values are mean±SD for 10 estimations.

Fig. 6. Time-trial images of all the subjects' EEG at Cz during NoGo trials. In the left image, the EEG epochs are randomly sorted. In the right image, the EEG
epochs are sorted by the estimated delays. The solid lines represent the stimulus onsets, and the dotted line represents the estimated delays.
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and individual subjects. The estimated delays from the stimulus
onsets, representing the latencies of the positive peaks in the
stimulus-unlocked components, are 403±76 ms for C3, 360±
66 ms for C4, 292±78 ms for Fz, and 336±69 ms for Cz, and these
are much longer than the RTs of Go trials (269±50 ms).

Fig. 6 shows the time-trial images obtained from all the
subjects' EEG at Cz. When the EEG epochs are randomly sorted,
only the stimulus-locked fluctuations appear (Fig. 6, left). How-
ever, when the EEG epochs are sorted by the estimated delays, not
only the stimulus-locked but also the estimated delay-locked
fluctuations appear (Fig. 6, right), suggestive of the validity of the
estimated delays.

Fig. 7, A, shows the extracted stimulus-locked components for
each EEG channel. The extracted components exhibit negative
peaks at around 240 ms (N200) and positive peaks at around
370 ms (P300) after the stimulus onset for all the 4 channels. The
correlation coefficients between the extracted components of indi-
vidual subjects and the averaged components of the other subjects
are significantly larger than zero (r=0.54±0.26, pb0.05 for C3;
r=0.42±0.31, pb0.05 for C4; r=0.66±0.15, pb0.05 for Fz;
r=0.43±0.31, pb0.05 for Cz), indicating that the extracted
components exhibit similar patterns across subjects. The correla-
tion coefficients between the extracted components and the
stimulus-triggered average EEG are significantly larger than zero
(r=0.90±0.049, pb0.05 for C3; r=0.87±0.12, pb0.05 for C4;
r=0.94±0.050, pb0.05 for Fz; r=0.89±0.10, pb0.05 for Cz),
indicating that the extracted stimulus-locked components exhibit
similar patterns to the stimulus-triggered average EEG.

Conventionally, EEG activity related to a response inhibition is
examined by using the NoGo-Go subtracting waveforms of the

stimulus-triggered average EEG (for example, Bokura et al., 2001;
Falkenstein et al., 1999; Kok, 1988; Yamanaka et al., 2002).
However, the stimulus-triggered average EEG is more or less
contaminated by the temporal overlapping of the stimulus-unlocked
components (Takeda et al., 2008). From the above-mentioned
similarity between the extracted stimulus-locked component and the
stimulus-triggered average EEG, it is expected that the difference in
the stimulus-triggered average EEG between Go and NoGo trials
comes from that of the stimulus-locked components rather than the
contamination effects. To confirm this expectation, we compare the
NoGo-Go subtracting waveforms of the stimulus-triggered average
EEG with those of the stimulus-locked components. The stimulus-
locked components of Go trials are extracted from the EEG and real
RTs of Go trials by our previous method (Takeda et al., 2008). The
NoGo-Go subtracting waveforms of the stimulus-triggered average
EEG appear to be almost the same as those of the stimulus-locked
components (Fig. 7, B), and the squared correlation coefficients
between them are high (r2=0.59 for C3; r2=0.70 for C4; r2=0.94
for Fz; r2=0.83 for Cz). Therefore, it is suggested that, at around Fz
and Cz, the differences of the stimulus-triggered average EEG
between Go and NoGo trials are mainly (about 83–94%) attributable
to those of the stimulus-locked components.

Fig. 8 shows the extracted stimulus-unlocked components for
each EEG channel. The extracted stimulus-unlocked components
exhibit positive peaks, whose magnitudes are comparable with those
in the extracted stimulus-locked components. The correlation coeffi-
cients between the extracted components of individual subjects and
the averaged components of the other subjects are significantly
larger than zero (r=0.67±0.097, pb0.05 for C3; r=0.67±0.24,
pb0.05 for C4; r=0.56±0.27, pb0.05 for Fz; r=0.67±0.17,

Fig. 7. Extracted stimulus-locked components at C3, C4, Fz and Cz. (A) Stimulus-locked components extracted from the EEG during NoGo trials. Thin lines
represent the extracted stimulus-locked components of individual subjects, and thick lines represent the averaged components across subjects. (B) Differences of
the extracted stimulus-locked components between Go and NoGo trials at Cz. The left panel shows the stimulus-locked component (solid line) and the stimulus-
triggered average (dotted line) of NoGo trials. The middle panel shows the stimulus-locked component (solid line) and the stimulus-triggered average (dotted line)
of Go trials. The right panel shows the NoGo-Go subtracting waveforms of the stimulus-locked component (solid line) and that of the stimulus-triggered average
EEG (dotted line).
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pb0.05 for Cz), indicating that the extracted stimulus-unlocked
components exhibit similar patterns across subjects.

Discussion

In this paper, we propose a novel method for obtaining the
delays of the stimulus-unlocked components together with the
stimulus-locked and -unlocked components only from single-
channel EEG epochs. The performance of the algorithm is verified
by two simulation tests with artificial and EEG data. Then, we
apply this method to the EEG data during NoGo trials of the Go/
NoGo task. As a result, the stimulus-unlocked components, toge-
ther with the stimulus-locked components, are successfully
extracted for the first time by this method.

Methodological considerations

The simulation tests show that our method can obtain the delays
of the stimulus-unlocked component even from noisy data, the
SNR of which is lower than zero but higher than −6 (for artificial
data) or −3 (for EEG data) (Figs. 3 and 4, D). Here, the SNR lower
than zero means that the level of the noise is larger than that of the
signal. Generally speaking, when noise is larger than a signal, it is
quite difficult, or impossible, to estimate the variable delays of the
signal from single-trial data. Our method deals with the difficulty
in a paradoxical way. To estimate the delays of “individual” trials,
the method uses data epochs of “all” the trials in calculating the
objective function. That is, we use all the trials for individual trials.
This strategy is an essential point in the feasibility of our method
for noisy data, such as EEG data.

The simulation tests also show that the estimation results be-
come inaccurate when the SNR is lower than −7 (for artificial data)
or −4 (for EEG data) (Figs. 3 and 4, D). It is of note that these
results hold true only when the number of trials N is 100, and the
accuracy of the estimation depends on the number of trials. When
the number of trials is smaller, the waveforms of the components
extracted by using true delays become less accurate. This indicates
that the estimated delays obtained by searching for the delays
which minimize the value of the objective function become less
accurate. In contrast, when the number of trials is larger, the

waveforms of the components extracted by using true delays be-
come more accurate. As a result, the true delays decrease the value
of the objective function more adequately, and the estimated delays
obtained by searching for the delays which minimize the value of
the objective function become more accurate. In fact, in our
simulation tests (not shown), as the number of trials increases, the
correlation coefficients between the estimated and original delays
become greater. Therefore, as long as we can solve the opti-
mization problem, our method can overcome a higher noise level
by increasing the number of trials.

In the optimization, we search for the set of the delays which
minimizes the objective function. We adopt the random search for
the optimization, because it achieves speedy convergence to a
global minimum with a high probability. Generally speaking, a
completely random search is a very slow algorithm when the
number of trials N is large (see Fig. 2, A, thin solid line). This is
because, as N increases, the size of the search space increases
exponentially and the probability of finding an optimal set of
delays decreases exponentially. We overcome this problem by
searching for the delays sequentially. That is, we reduce the
dimension of the search space from N to 1 by searching for the
delays with respect to individual trials, and increase the probability
to find a better set of delays. This is the reason why the con-
vergence of the restricted random search we used is fast (Fig. 2, A,
thick solid line), with a high probability of convergence to a global
minimum (Fig. 2, B).

Because the random search is a stochastic algorithm, the
estimated delays and the extracted components should vary more
or less in each repeated estimation. The repeated simulation tests
show that, when the SNR is high, the accuracy of the estimation is
high and almost the same across the repetitions (Figs. 3 and 4, D),
indicating that the estimation is robust when it is accurate. When
the SNR is low, the accuracy of the estimation is low and variable
across the repetitions (Figs. 3 and 4, D), indicating that the
estimation is not robust when it is not accurate. From these results,
it is suggested that the robustness can be an index of the accuracy
of the estimation. Therefore, we repeatedly apply our method to the
EEG during NoGo trials to check the robustness of the estimation
results and present only robust results (see Methods section).

Hitherto, the waveforms and delays of the stimulus-unlocked
EEG components have been obtained by peak-picking, Woody's

Fig. 8. Extracted stimulus-unlocked components from the EEG at C3, C4, Fz and Cz during NoGo trials. Thin lines represent the extracted stimulus-unlocked
components of individual subjects, and thick lines represent the averaged components across subjects. The horizontal axes represent relative time to the time
points of the maximum peaks in the average stimulus-unlocked components.
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method and the method of Pham et al. (Biggins et al., 1997;
Jaśkowski and Verleger, 1999, 2000; McGillem et al., 1985; Möcks
et al., 1988; Pham et al., 1987; Puce et al., 1994a,b; Woody, 1967).
The main difference between our method and these is the un-
derlying assumption. These methods assume that only one com-
ponent, the stimulus-unlocked component, appears after stimulus
onsets, whereas our method assumes that two components, the
stimulus-locked and -unlocked components, appear and these are
temporally overlapping. The temporal overlapping of the two
unknown components makes the problem quite difficult because
the two components contaminate each other, and the appearance of
the two components varies from trial to trial (see Fig. 1, B). For
example, it is possible that a negative peak in the stimulus-locked
component averages out a positive peak in the stimulus-unlocked
component and both of the components appear not to have the
peaks. Because methods which assume only one component do not
consider such a contamination effect, they cannot be used when
two components are temporally overlapping. In contrast, our
method can be used, regardless of whether the number of the
components is one or two and whether contamination occurs or
not.

On the other hand, our method has a limitation. In calculating
the objective function, the proposed method uses our previous
method for decomposing EEG during reaction time tasks into
stimulus- and response-locked components using known RTs
(Takeda et al., 2008). This method has the technical limitation that
slow waves (~1 Hz) in noise are amplified by the decomposition.
Because of this limitation, the proposed method cannot easily deal
with slow components, such as the contingent negative variation
(Walter et al., 1964). To extract slow components by the proposed
method, we need to increase the number of trials at the expense of
the calculation time for the optimization.

Estimated RTs from EEG during Go trials

By applying our method to the EEG during Go trials, the RTs of
Go trials are successfully estimated for Subjects 4 and 5, but are
not for the other subjects (Table 1). The successes of the estimation
support the feasibility of our method for real EEG data. On the
other hand, the failures of the estimation are partially due to the
low SNR of EEG during Go trials and to the fact that the stimulus-
unlocked components are not necessarily time-locked to the motor
responses. As for the latter, Verleger et al. (2005) examined the
EEG during choice reaction time tasks by the stimulus- and
response-triggered averaging procedures, and reported that the P3b
is time-locked to neither stimulus nor motor response onsets. Con-
sidering that the Go/NoGo task is a choice reaction time task, it is
possible that the EEG during Go trials also includes the com-
ponents time-locked to neither stimulus nor motor response onsets
and our method extracts such components instead of the response-
locked components.

Extracted components from EEG during NoGo trials

This method assumes that the EEG activity consists of a
stimulus-locked component and a stimulus-unlocked component.
However, the existence of a stimulus-unlocked component is less
evident than a stimulus-locked component, which appears with the
use of the stimulus-triggered averaging procedure. Therefore, to
check the validity of the assumption, we examine whether the EEG
variance across trials shows a transient increase after the stimulus

onset. Although one might argue that the changes in the EEG
variance are attributable to the variability of the waveform of the
stimulus-locked component rather than the stimulus-unlocked
component and its variable delays, from the relatively constant
EEG variance during the passive viewing task, we believe that the
variability of the waveform of the stimulus-locked component is
not so large as to generate a drastic change in the variance of the
EEG during NoGo trials (Fig. 5). Therefore, we apply the proposed
method to the EEG during NoGo trials, and extract the stimulus-
locked and -unlocked components.

The waveforms of the extracted stimulus-locked components are
almost the same as those of the stimulus-triggered average EEG.
This indicates that the stimulus-unlocked components are almost
cancelled out by the stimulus-triggered averaging procedure. The
extracted stimulus-locked components exhibit the N200 and P300 as
well as the stimulus-triggered average EEG. This indicates that the
N200 and P300, which are the classical peaks of the EEG during
NoGo trials (Bokura et al., 2001; Falkenstein et al., 1999; Verleger,
1988; Verleger et al., 2006; Yamanaka et al., 2002), are stimulus-
locked. We can visually confirm this fact by the stimulus-locked
fluctuations at around 240 and 370 ms in the time-trial images
(Fig. 6). At around Fz and Cz, the differences in the stimulus-locked
components between Go and NoGo trials largely account for those
in the stimulus-triggered average EEG (Fig. 7, B). This result
suggests that, in the fronto-central region, the conventional
differences in the EEG between Go and NoGo trials are mainly
attributable to those in the stimulus-locked components rather than
the contamination effects by the stimulus-unlocked components.
Further, the different waveforms of the stimulus-locked component
between Go and NoGo trials indicate that the stimulus-related brain
processes are different between Go and NoGo trials.

As for the extracted stimulus-unlocked components, its mag-
nitudes are comparable with those of the stimulus-locked com-
ponents (Figs. 7 and 8). The presence of the extracted stimulus-
unlocked components and the validity of the estimated delays are
confirmed by the results that the time-trial images show the
fluctuations time-locked to the estimated delays and that the
waveforms of the extracted components are similar across subjects.

The average delays of the positive peaks in the stimulus-
unlocked components are almost the same as the P300 latency in the
stimulus-locked component (363±26 ms), indicating that the
positive peaks mainly overlap with the P300 in the stimulus-locked
components (see Fig. 6, right). From this result, we consider that our
method for the first time decomposes the conventional P300 of
NoGo trials, which appears by the stimulus-triggered averaging
procedure, into the stimulus-locked P300 and the stimulus-unlocked
P300, corresponding to the positive peak in the stimulus-unlocked
component.

Possible applicability

Our method extracts the stimulus-locked component, the
stimulus-unlocked component and its delays of individual trials
from the EEG data during NoGo trials. Then, what will be gained
by applying our method to other EEG data (and possibly to other
brain signals)?

Tallon-Baudry showed evidence for a role for induced gamma
activity, whose phase is not time-locked to stimulus onset, in the
construction of a coherent representation of objects and the rehearsal
of the representation in memory (Tallon-Baudry and Bertrand,
1999). This suggests that some brain activity related to perception
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and memory recall is not time-locked to stimulus onset. Also, the
brain activity related to solving problems, or the “Aha!” experience
(Jung-Beeman et al., 2004), is not time-locked to the presentation of
problems. Until now, the time points of solving problems have been
estimated from the onset of the subject's response claiming to have
solved the problem (for example, Jung-Beeman et al., 2004). How-
ever, the relation between the onset of the solving of a problem and
that of the subject's response is not clear. Considering the large
variability of RTs even during “simple” reaction time tasks, it is
possible that the intervals between the two onsets also have large
variability. If so, we cannot extract pure brain activity related to
problem solving from the response onset. By applying our method to
EEG during these kinds of cognitive tasks, we can obtain more
detailed information, the pure EEG waveform and its onsets, on the
brain activity involved in such complex functions.

The advantages of our method are not only to extract the
stimulus-unlocked component but also to extract the uncontami-
nated stimulus-locked component. Conventionally, the stimulus-
triggered average EEG has been thought to reflect the stimulus-
locked EEG component in the hope that the stimulus-unlocked
component, even if it exists, would be cancelled out by the
stimulus-triggered averaging procedure. However, whether this
premise is well satisfied or not is unclear unless uncontaminated
components are disclosed. This is because the effect of the
contamination is determined by the waveform of the stimulus-
unlocked component and its delays, which were unknown before
the application of our method. In this study, we reveal that the
contamination is small in the fronto-central region by comparing
the NoGo-Go subtracting waveforms of the stimulus-triggered
average EEG with those of the stimulus-locked components. By
applying our method, we can obtain the uncontaminated stimulus-
locked component and examine the level of contamination by the
stimulus-unlocked component.

Conclusion

The proposed method successfully extracts a stimulus-unlocked
component and its delays from the EEG during NoGo trials. In the
brain, internal and subjective events related to cognitive functions
seem to occur, not with precisely constant delays, but with various
delays from trial to trial after stimulus onset. Since the proposed
method can extract such brain activity, the method will provide a
new tool to look into complex and implicit brain functions.
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