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Abstract— This paper discusses an integration issue of multi-
level postural balancing on humanoid robot. We give a unified
viewpoint of postural balancing, which covers Ankle Strategy
to Hip Strategy. Two kinds of distributor of desired ground
reaction force to whole-body joint torque are presented. The
one distributor leads to a dynamic balancer which covers
Hip strategy, with the under-actuated situation. A simple
angular momentum regulator is also proposed to stabilize
the internal motions due to the joint redundancy. The other
distributor leads to a static balancer which lies between Ankle
and Hip strategy. Furthermore, this paper demonstrates that
replacement of the center of mass feedback with the local joint
stiffness makes the robot much stabler for some fast motions.
Motivated by the practicability of the static balancer and the
strong push-recovery performance of the dynamic balancer, this
paper presents a simple integration by superposition of the
both balancers on a compliant human-sized biped robot. The
simulation and experimental videos are supplemented.

I. INTRODUCTION

A. Motivation

When a human is suddenly pushed forward, he/she can
take various actions to recover the balance. Physiologists
have been discussing about the three major recovery strate-
gies; (a) Ankle Strategy, (b) Hip Strategy and (c) Step [1][2]
. Since human postural control is fundamental full-body
motor control for humans, some high level nervous system
is supposed to be involved as well as vestibular, somatic
and proprioceptive feedback [3][4][5][6]. Actually, the Ankle
Strategy is not just joint-stiffness control because there
should be anti-gravitational forces, which can be computed
by using internal model of body such as mass distribution
of the each limb.

The challenge of this paper is to suggest computational
models of human postural control by exploiting possible
controller realizations on compliant humanoid robots, which
interacts with the environment in real-time as humans do [7].
Such attempt is also beneficial to development of human-
friendly assistive/rehabilitation devices. Our approach is first
implementing the above three strategies on humanoid robot
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Fig. 1. Overall control architecture of postural balancing. This is composed
of dynamic balancer, static balancer, gravity compensation and joint stiff-
ness. The four blocks in the left show each control module, whose details
are shown in the indicated sections and equations (ignore some overlapped
terms in the equations). r is the desired task-space position, and q is the
desired joint-space position. The outputs of the modules are simply summed
up, according to the task objectives.

models, and then comparing the results with the human data
at different levels of sensory-motor control.

In robotics, these controllers have been discussed, but
in most cases they are independently studied without in-
tegration issue (see biped walking literatures). One of the
open question is how humans combine (or just switch) these
three modules according to the sensory feedback and internal
model. A model predictive controller is proposed in [8], and
some model-based criteria are proposed in [9][10], based on
human model and human gait data.

In [11], we discussed the integration issue in passiv-
ity context, and also implemented a simple push-recovery
controller from balancing to stepping on a human-sized
compliant humanoid robot. This paper continues to discuss
the integration issue (comparison with human data is left for
the future work). The overview of this paper is shown in
Fig. 1.

This paper has three contributions. The first one is a
unified viewpoint of postural balancing, which covers Ankle
Strategy to Hip Strategy as follows.

• From the causality of the controlled system, the motion
of the center of mass (CoM) is determined by the
ground reaction force (GRF), and the control problem
is how to distribute desired GRF into full-body joint
torque. Directly solving the full dynamics leads to a rich
balancing controller, which we call Dynamic Balancer
(DB) in this paper (1st block in Fig. 1). This balancer
is free from so-called “ZMP (Zero Moment Point)
criteria” [12], and can be applied to under-actuated



situation, the situation which “Hip” Strategy implies.
However, it suffers from the computational cost, internal
motions, and singularity. The internal motions appear
regardless of the CoM regulation. We show that the
internal motions are coming from angular momentum
(AM), and the regulation of AM can be achieved by
simply adding integral action to the CoM feedback law
in the desired GRF.

• Within the limitation of the ZMP criteria, we can use a
passivity-based postural control strategy without taking
the dynamic effect into account [17]. At the cost of
reducing the GRF (hence, the balancing ability), the
internal motions due to the redundancy can be sup-
pressed by simple joint damping, which also suppress
the angular momentum around CoM. These make the
ZMP almost equivalent to center of pressure (CoP). We
call this balancing controller as Static Balancer (SB)
in this paper (2nd block in Fig. 1). This controller lies
between Ankle Strategy and Hip strategy.

The second contribution is a discussion on a stiffness
controller superposed by gravity compensator (G-comp) (3rd
and 4th block in Fig. 1). This is a simple substitute for
the CoM feedback control, resulting in Ankle Strategy. We
discuss the advantage and disadvantage of this controller over
the CoM feedback from a computational and biological point
of view.

The third contribution is a demonstration of a simple
integration of SB and DB. Specifically we discuss a superpo-
sition of the control outputs (joint torques) of the two control
modules (the summation symbol in Fig. 1). We will show the
robust push-recovery performance on our humanoid robot.

II. DYNAMICS

We start with simple planar floating-based models to
test ideas, then extend to full-body humanoid model. The
experimental hardware are shown in Fig. 2(a) and Fig. 2(b).
The former is a planar 4-link acrobat robot, which can control
the joint torque by standard analog current feedback [14],
where we have succeeded in direct CoM control via inverse
dynamics. The latter is a human-sized humanoid robot, CB-i
[7], which also provides force control by high-speed force
feedback loop. Let us first consider a planar 4-link model
comprising torso, thigh, shank and foot as shown in Fig. 3(a).
In the later simulation we also use a 3-link model without
foot, shown in Fig. 3(b).

We treat balancing control at toe-support or heel-support
uniformly, but the equation of motion of the former includes
the latter. Therefore, we show only the former one here. Let
the toe locate at the origin, and rC = [xC , zC ]T ∈ R2 be
the position of the CoM, q := [q1, q2, q3, q4]T ∈ R4 be
the posture angles, which combines to qC = [rC , q]T ∈ R6

where q1 is the cyclic variable (ignorable coordinate) [13].

(a) Planar 4-link robot (b) Humanoid robot

Fig. 2. Hardwares for experiments
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The constrained equation of motion can be written as[
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and

ṙC + JP (q)q̇ =
[

id2 JP (q)
]︸ ︷︷ ︸

Ê(q)

˙̂qC = 0, (2)

where idN is identity matrix of dimension N , O is a zero
vector or matrix with the context-wise dimension, M =
diag(m, m) ∈ R2×2 is the mass matrix with m being the
total mass, I(q) ∈ R4×4 is the inertia matrix, C(q, q̇)q̇ ∈ R4

is the centrifugal/Colioris term, G = [0, g]T ∈ R2 is the
gravity acceleration, JP ∈ R2×4 is the Jacobian from the
toe to the CoM, and τ = [τ1, τ2, τ3, τ4]T ∈ R4 is the applied
torque associated to q. The constraint force fP ∈ R2 is the
GRF.

Usually, τ1 is limited or not available. When the foot
completely sticks to the ground, this torque plays a role of
constraint torque that maintains q1 = q̇1 = 0. In this case,



this torque together with the GRF fP determines the position
of the CoP. Without any constrain, the above equation shows
a simple ballistic flight. See [14] for the details of derivation.

III. A UNIFIED INTERPRETATION FROM ANKLE
STRATEGY AND HIP STRATEGY

If we define the postural balancing as “the regulation of
the ground projection of CoM to the center of supporting
region (SR)”, it would be useful to control CoM by a new
control input fu = [fux, fuz]T ∈ R2, through the linear
dynamics

Mr̈C = fP − MG = fu. (3)

The simplest stabilizing input will be a PD feedback law

fux = −KP xC − KDẋC , (4)
fuz = −KP (zC − zC) − KDżC , (5)

with the target height zC , which is usually set to equilibrium
where the control input can be minimized. Note that one
should restrict either fux and/or fuz to obey the friction
constraint fux ≤ μ(mg + fuz) with the friction coefficient
μ (in the later simulation we set μ = 0.5).

From Eq. (1) and Eq. (2), fP can be written by1

fP = (ÊÎ−1ÊT )−1
{

γ + ÊÎ−1(u − Ĉ − Ĝ)
}

(6)

with γ(q, q̇) = ∂
∂q (Êq̇)q̇. Hence, we can compute the desired

joint torque by substituting Eq. (3) into this equation.
Note, however, this requires inverse operation, which does

not give us the unique solution. Nevertheless, the above
computation is a fundamental of the exact CoM control via
GRF. Actually, in the following, we discuss Ankle Strategy
and Hip Strategy in a unified mechanism, but with a bit
difference of how GRF is distributed into the joint torques.

A. Dynamic solution leads to Hip Strategy

Suppose the robot is in toe-contact. Eq. (6) can be re-
written as

ÊÎ−1︸ ︷︷ ︸
A

(u − Ĉ − Ĝ) = −γ + (ÊÎ−1ÊT )(MG + fu)︸ ︷︷ ︸
B

, (7)

or [
A11 A12

A21 A22

] [
MG

τ − Cq̇

]
=

[
B1

B2

]
. (8)

To give τ1 freely (including zero), we separate it out, then
we obtain[

A12(2 : 4)
A22(2 : 4)

]⎡
⎣ τ2

τ3

τ4

⎤
⎦

=
[

B1 − A11MG − A12Cq̇ − A12(1)τ1

B2 − A21MG − A22Cq̇ − A22(1)τ1

]
.

(9)

The size of the left coefficient matrix is 2 × 3, and we can
solve the equation for (τ2, τ3, τ4) by using pseudo-inverse,

1By substituting Eq. (6) into Eq. (1), we can obtain the reduced dynamics
of dimension 4.

which we call dynamic balancer (DB). Moreover, if we use
a weighting matrix

W = (diag([m2, m3, m4]))
−1

, (10)

it prevents the light links from moving fast to rush into
the singular posture. Although it is not easy to solve the
singularity, the above control torque exactly achieves fP =
MG+ fu for given τ1 and the state (q, q̇) within the regular
region.

Fig. 5 (and Video 1) shows the balancing control sim-
ulation of the 3-link model (Fig. 3(b)) with τ1 = 0 and
Eq. (4)(5). The link parameters are set similar to the hu-
manoid robot in Fig. 2(b). Since the robot is under-actuated,
and the initial CoM is far from the equilibrium, the robot has
to move its joints very fast, while avoiding the singularity.
We noticed that singularity occurs when the knee joint meets
q2 ≥ 0. We use a simple joint limit (spring-damper) to avoid
the singularity in this simulation. This corresponds to Hip
Strategy.

As one can see from the figure and video, the hip joint
rotates unboundedly, while the CoM stays at the target
position. This shows well-known internal motion [15]. The
both angular momentums (AM) around the contact point or
CoM are converging to constants (see Graph (d)). We cannot
avoid the internal motion by tuning parameters. Therefore,
the AM together with CoM should be regulated in DB. In
[14] we specified the desired AM, then solved its time-
derivative together with Eq. (6). Instead of doing this, we
will show much simpler solution in Section III-D.

B. Static solution leads to the middle of Hip and Ankle
Strategy

If the toe and heel do not leave the ground, we can use
τ1 as the control input. In this case, quasi-static solution is
available, which we call static balancer (SB). If we put γ ≈ 0
and Ĉ ≈ 0 into Eq. (6), we can obtain the control torque

τ = JT
P (fv + MG), (11)

fv = fu + (JP I−1JT
P )−1M−1fu, (12)

which leads to

fP ≈ fu + MG (13)

Moreover, if we put the additional damping term to the
right-hand-side of Eq. (11) and further simplifies it, we have

τ = JT
P (fu + MG) − Dq̇. (14)

With this controller we can prove the actual GRF asymptot-
ically approaches to the desired one:

fP → fu + MG (t → ∞) (15)

This is a passivity-based contact force control for redundant
legged robots proposed in [16]. For balancing case, the
desired GRF can be designed as Eq. (4). When fu = 0
(no CoM feedback), the controller becomes a (full-body) G-
comp.



The resultant controller is a full-body torque controller,
not corresponding to Ankle Strategy, nor Hip Strategy. See
[17] for the actual performance of the controller (14) (with
additional optimization), which was applied to a full-body
humanoid robot. To make SB work properly, the ZMP must
lie within SR. Therefore we restrict fu so that the desired
CoP does not cross the bound of SR [11]. This is not the
case for DB.

C. Replacing the CoM feedback to local stiffness leads to
Ankle Stragety

The Ankle Strategy was originally meant for stabilizing
control of a single inverted pendulum that represents a global
human posture. It has a unique upright equilibrium posture
q = qe where xC = 0. The stabilization is achieved by a
local PD control torque around the pivot, the ankle joint. In
addition, an integral action or feedforward input should be
used if the target posture is not qe.

For multi-DoF humanoid model, the equilibrium posture is
not unique. If the equilibrium posture qe is given in advance,
we can implement local joint stiffness control around that
posture. As a result, we can replace the original controller
Eq. (14) + Eq. (4) with a simpler one:

τ = JP (q)T MG − Dq̇ − K(q − qe), (16)

where K is a stiffness matrix to be designed or learned [18].
Below we discuss how this controller is useful from

a computational point of view. First of all, note that the
computational cost is the same because we use full-body G-
comp that requires forward kinematics. The problem lies in
its practicability. The CoM feedback (Eq. (14) with Eq. (4))
is flexible, but it makes the robot fluctuate even in the
equilibrium posture because of the noise in the CoM estima-
tion (including the orientation measurement). Contrary, the
response of Eq. (16) is much faster than the CoM feedback
because the stiffness torque is implemented in the local joint
controller. The schematic illustration comparing with the
CoM feedback is shown in Fig. 4.

The first G-comp term in Eq. (16) has also the same delay,
therefore, the update of the motor command is relatively
slow. However, as described in Appendix I, the delayed
motor command generates stiffness around the target posture.
We think this noise-robust controller is suitable for some

rP

fS1 fS2 fS3 fS4
Target

Mg

-K Δq-K Δq

(a) G-comp + stiffness around
 the target equilibrium

rP

fPfS1 fS2 fS3 fS4

(b) CoM feedback controller

Fig. 4. Two balancing schemes against unknown external side-force.
(a) Simple balancing control scheme with G-comp and stiffness. (b) CoM
feedback control with G-comp. For the details of the optimal contact force
distribution fSj (j = 1, 2, ...), see [17].

fast coordinated motions, although some physiology papers
[19][20] argues that these are coupled.

Video 2 and Video 3 show the experimental results of fast
upper-body motions with torso twisting during quite stance
[21], under the two different balancing schemes discussed
above. The latter is much stabler than the former one. This
is because the lower limbs do not need to move much in
this particular motion example. Otherwise, the desired equi-
librium posture qe should be replaced with the equilibrium
trajectory qe(t) [25].

D. Stabilization of angular momentum by integral action

As we have seen in Section III-A, merely stabilizing CoM
does not solve the internal motions. On the other hand, a
passivity-based solution in Section III-B can suppress the
internal motions, but the region of attraction is limited by
CoP up to SR.

Here we take a look at AM. The third line of the equation
of motion Eq. (1),

I1q̈ + C1q̇ = τ1 + JT
P1fP , (17)

where I1 and C1 are the third row vector of the inertia matrix
I and colinear matrix C, respectively (neither includes the
cyclic variable q1), and JP1 = [−zC , xC ]T is the sub-matrix
of JP = [JP1

∣∣ JP2].
Since the AM around CoM is represented by PC = I1q̇,

Eq. (17) can be re-written as

ṖC = τ1 + JT
P1fP . (18)

On the other hand, the AM around the contact point is
expressed, by definition, as

P0 = PC + rC × mṙC , (19)

and its time-derivative is given by

Ṗ0 = ṖC + m(zC ẍC − xC z̈C)
= ṖC + zCfx − xC(fz − mg). (20)

Substituting Eq. (18) into Eq. (20) yields

Ṗ0 = (−zCfx + xCfz + τ1) + zCfx − xC(fz − mg)
= τ1 + xCmg. (21)

From Eq. (19) we reach the following statement. Since
rC × mṙC → 0 when the CoM is asymptotically stable, it
can happen that P0 �= 0 if PC �= 0. This is the internal
motions we have seen in Section III-A.

Consequently, from Eq. (21) it is found that we should
use

fux = −KP xC − KDẋC − KI

∫
(τ1 + xCmg)dt, (22)

instead of Eq. (4), to regulate AM. Thus we can achieve
P0 → 0, which means the allowed motion is asymptotically
restricted to the manifold I1q̇ = 0.

Fig. 6 (and Video 4) shows the result of the proposed
controller (22). The conditions are exactly the same as the
previous simulation (Fig. 5) except for the additional integral
action. The internal motions completely disappeared.
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Fig. 5. Three-link model under-actuated balancing simulation (Video 1)

0 1 2 3
−0.1

−0.05

0

0.05

0.1

(a
) 

X
 p

os
iti

on
 (

m
)

 

 

0 1 2 3
−2

0

2

4

6

8

(b
) 

P
os

tu
re

 (
ra

d)

 

 

0 1 2 3
−200

−100

0

100

200

300

400

500

Time (s)

(c
) 

T
or

qu
e 

(N
m

)

 

 

0 1 2 3
0

5

10

15

20

25

30

(d
) 

A
M

 (
N

m
s)

Time (s)

 

 

x
C

x
C

.d ZMP

1 2 3

1 2 3 P
0

P
C

Fig. 6. With angular momentum regulation by integral action (Video 4)

The similar balancing simulations are conducted using the
4-link model with the toe contact. The result is shown in
Fig. 7 and Fig. 8 (and Video 5), where the weight matrix
Eq. (10) is adopted. Interestingly, the recovery motion looks
like human’s behavior. The CoM and ZMP rapidly approach
to the origin (toe) within 0.2 s as shown in Fig. 7(a), and
then slowly converge2 as shown in Fig. 7(b). Note that no
torque is applied around the toe (see τ1 = 0 in Graph (e)).
The AM rapidly increases from the initial value (zero) as the
CoM is pulled back to origin, and then converges to zero as
the internal motion (joint motion) converges. The global error
response is determined by a linear feedback controller (22). If

2It would be natural to set the target of CoM to a position a bit behind
the toe. Then, the robot can relax at the static equilibrium. We didn’t do
this here simply because it was tedious to simulate the heel contact, but see
Section IV.
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Fig. 8. 4-link model under-actuated balancing simulation

we want, we can shape the response curve by modifying the
desired GRF. Note there is a discontinuous change around
0.45 s. This is because of the knee joint hitting its limit.
Since we use a simple spring-damping model for the limit,
there are small errors in the GRF (Graph (d)). The torso
is strongly tilted from the initial upright posture. It is not
difficult to expect the amount of the tilt can be reduced if
we put the arms to the body because the arm will rotate to
the same direction.

The actual region of attraction is limited by physical
constraints such as maximum torque, range of joint angle,
etc. Although some analysis on a simple pendulum model
with a flywheel is useful [22], it would be difficult to



take everything into account for full-body humanoid robot
without off-line optimization or try-and-error based learning.
Nevertheless, it is worth to implement the DB together with
SB on our humanoid robot to see the performance and the
limitation, which is shown in the next section.

IV. INTEGRATION ON HUMANOID ROBOT

This section presents a simple integration of SB and DB
and applies to a human-sized humanoid robot. Since we have
no solid evidences on how humans use these two modules,
we first implement and test the both on the actual robot, and
then get back to the theory.

The motivation to use SB is its simplicity, practicability
and safety. But it is not strong. Actually, it loses the control-
lability of CoM once its projection locates outside SR. On
the other hand, DB suffers from difficulties in implementa-
tion: difficult to derive the dynamic model, and difficult to
compute (measure) the necessary dynamics to compensate
Therefore, we use the SB as a default, and combine the DB
in a safe way. Specifically, we tested a simple superposition
of SB and DB, where the DB is computed for a reduced 2-
link acrobot [23] model, where the control input is available
only for the hip joint (ankle joint is free). Different from the
controller for 3-link or 4-link model in Section III-A, the
acrobot controller is free from the control singularity; the
equation is simple; no need to use the weighting matrix. The
2-link model is the reduced model of the humanoid robot,
where the first link is composed of the shank and thigh, and
the second link is the torso.

The control output from DB is just superposed to the
hip joint. Similar integration can be found in [24], but a
difference is that we limit the desired CoP for SB, but not
do that for DB to take advantage of its strong recovery
performance. Also, we are applying full-body SR (not local
stiffness control) with the optimized contact force control for
all the time.

Below we show some simulation and experimental results
on a full-body humanoid robot. Video 6 shows the simulation
result, where forward and backward pushes (±300 N to
the pelvis during 0.1 s) are applied. The arm joints are
just commanded zero torque with a small damping, and the
head is orientation controlled. Fig. 9 show the corresponding
simulation data. See the caption for the details of the data.
Without DB, the robot could not recover the balance. Without
SB, the robot could not keep its posture, and the upper body
rapidly rotated, which made the normal GRF small enough
for the robot to lose its contact with the ground.

Fig. 10 show an experimental result with the same con-
troller. Strong forward/backward pushes have been applied
from human operator to the robot pelvis. Graph (f) shows
the torque output from the 2-link DB module, which is
distributed to the both right and left hip joints. A large input
is required for a “strong” backward push applied at t = 33 s
(indicated by bPush2). The required torque for the hip joint
exceeds 200 Nm. On the other hand, in the case of the similar
“strong” forward push at 42.5 s (indicated by fPush3), the
hip torque is about -150 Nm. The compensation appears to
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Fig. 9. Simulation data of push-recovery control by SB and DB. Multiple
pushes have been applied to the robot torso. (a) xC is CoM, xP and xP.d
are the actual and desired CoP, which do not exceed SR (upper and lower
bounds, which are slightly shifting upward because of the slippage). The
forward pushes (fPush1, fPush2, fPush3, fPush4) and the single backward
push (bPush1) are indicated. Compare with Video 6. (b) Actual GRF does
not match to the desired because of the superposition. (c) Desired and actual
CoM height. (d) joint angles for the right leg (qR2:hip, qR4:hip, qR6:ankle)
and the torso pitch (qT3). (e) Control output from SB module. The subscripts
have the same meaning as Graph (d). (f) Control output from DB module.
Comparing with τR2, the sign of the DB torque is opposite to the SB torque
for the initial stage of the push-recovery.
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Fig. 10. Experimenta data of push-recovery control by SB and DB.
The symbols are the same as Fig. 9. Large peaks mean that three-times
forward pushes and twice backward pushes (fPush1, bPush1, bPush2,
fPush2, fPush3) have been applied to the robot pelvis from the human
operator. When bPush2 is applied, the actual hip torque saturated (not shown
in graphs).

the knee joint (Graph (c)). Fig. 11 shows the snap shots of
the recovery motion when pushed the torso (see Video 7).

V. CONCLUSION AND FUTURE WORK

The motivating idea of using passivity-based controller
(SB) for postural balancing was its simplicity and practi-
cability. On the other hand, the purpose of deriving complex
controller (DB) was to test its actual performance. From the
practical and safety reason, in this paper we integrated the
both by simple superposition. Surprisingly, the performance
has been greatly improved compared with the case only SB is

Fig. 11. Typical behavior of superposition of SB and DB (Video 7)

Fig. 12. Combined push-recovery with stepping (Video 7)

used. However, dynamic motions are expected to be learned
by robot itself [25]. Our future effort will be devoted to this
work. On the other hand, once the balancing performance
is improved, it becomes easy to combine the step strategy
for re-balancing. Fig. 12 (Video 7) shows one of the re-
balancing experiment. The same symmetric foot placement
strategy in [16] has been applied. We expect the robust push-
recovery controller leads to robust walking, which we believe
a starting point for optimal walking via learning.
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APPENDIX I
BIOLOGICAL EVIDENCE OF SUPERPOSITION

Here we briefly explain the superposition in Eq. (16) from
a biological point of view. We adopt a simple musculoskele-
tal system model proposed by Hogan [26]. Fig. 13 shows
a single joint model. With this model, we can compute
the desired motor command (neural activity) for isometric
muscles u1, u2 when some desired one-parameter joint
trajectory q(t) (angle displacement from the rest posture) and
desired load torque τL(t) are given. For example, the anti-
gravitational torque to support own weight will be the most

q=q
Angular deviation

CNS

τ

u1

u1

u2

u2

Target posture

L

q = q - q

τL

Unknown load

Δ

+K (u1+u2) Δq

Known load

Planned (optimal)
motor command

The same
motor command

Fig. 13. Operation of the musculoskeletal system model under load. (Left)
Planned (optimal) motor command for some given target posture q and
load. The load torque is indicated by τ . (Right) The net torque under
unknown load with the same motor command. This observation motivates
the implementation of superposition in the whole-body force controller given
by Eq. (16).

fundamental load torque for human postural control. Using
the musculoskeletal model, the motor command is computed
as

τL(t) = T0(u1 − u2) − K(u1 + u2)q(t), (23)

where K is the angular stiffness, and T0 is the maximum
torque in the rest position (see [26]).

We can solve the for the “optimal" motor command u
from Eq. (23) (using the Kuhn-Tucker conditions), which is
applied to the muscles in a feedforward manner. Then, the
actual applied torque becomes

τ = T0(u1 − u2) − K(u1 + u2)q. (24)

When q(t) = q(t), the joint torque satisfies τ = τL(t).
Otherwise, the joint torque becomes

τ = τL + K(u1 + u2)Δq (25)

where Δq = q − q is the joint angle error.
This results in a superposition of feedforward and propor-

tional feedback control laws for the target joint trajectory.
This observation supports the implementation of superposi-
tion in a simple balancer given by Eq. (16).

The desired loads and postures are assumed to be given
by the task-space control center. If the robot has artificial
muscles in its joints [27], then a lower-level control center
generates the necessary motor commands for the muscles, as
shown in the right block in Fig. 1. In our humanoid robot,
torque control is implemented as high-speed force feedback
control.


