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Abstract

When collecting large amounts of neuroimaging data associated with psychiatric disorders,

images must be acquired from multiple sites because of the limited capacity of a single site.

However, site differences represent a barrier when acquiring multisite neuroimaging data.

We utilized a traveling-subject dataset in conjunction with a multisite, multidisorder dataset

to demonstrate that site differences are composed of biological sampling bias and engineer-

ing measurement bias. The effects on resting-state functional MRI connectivity based on

pairwise correlations because of both bias types were greater than or equal to psychiatric

disorder differences. Furthermore, our findings indicated that each site can sample only

from a subpopulation of participants. This result suggests that it is essential to collect large

amounts of neuroimaging data from as many sites as possible to appropriately estimate the

distribution of the grand population. Finally, we developed a novel harmonization method

that removed only the measurement bias by using a traveling-subject dataset and achieved
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the reduction of the measurement bias by 29% and improvement of the signal-to-noise

ratios by 40%. Our results provide fundamental knowledge regarding site effects, which is

important for future research using multisite, multidisorder resting-state functional MRI data.

Author summary

Recently, the importance of acquiring and sharing large amounts of resting-state func-

tional magnetic resonance imaging (rs-fMRI) data from multiple geographical locations

or sites has increased. However, differences in the data acquired from multiple sites create

heterogeneities that present a barrier to the analysis. To properly manage these heteroge-

neous multisite data, it is important to have a deeper understanding of the origin of these

between-site differences and to harmonize rs-fMRI data among sites. In this study, we

demonstrate that site differences are composed of biological sampling bias (differences

between the participant groups) and engineering measurement bias (differences in the

properties of the MRI scanners used). We found that the effects of both types of bias on

rs-fMRI functional connectivity were greater than or equal to those driven by psychiatric

disorders. Furthermore, our results identified the specific properties of MRI scanners that

affect the rs-fMRI connectivity. To overcome the limitations associated with site differ-

ences, we used a traveling-subject dataset, wherein multiple participants travel to multiple

sites to assess measurement bias by controlling for participant effects between sites. Our

results indicated that the traveling-subject dataset can help the proper harmonization of

rs-fMRI data between sites.

Introduction

Acquiring and sharing large amounts of neuroimaging data have recently become critical

for bridging the gap between basic neuroscience research and clinical applications, such as

the diagnosis and treatment of psychiatric disorders (Human Connectome Project [HCP]

[1] [http://www.humanconnectomeproject.org/]; Human Brain Project [https://www.

humanbrainproject.eu/en/]; UK Biobank [http://www.ukbiobank.ac.uk/]; and Strategic

Research Program for Brain Sciences [SRPBS] [2] [https://bicr.atr.jp/decnefpro/]) [3–5].

When collecting large amounts of data associated with psychiatric disorders, it is necessary to

acquire images from multiple sites because it is nearly impossible for a single site to collect a

large amount of neuroimaging data from many participants (Connectomes Related to Human

Disease [CRHD] [https://www.humanconnectome.org/disease-studies], Autism Brain Imag-

ing Data Exchange [ABIDE], and SRPBS) [2, 6–8]. In 2013, the Japan Agency for Medical

Research and Development (AMED) organized the Decoded Neurofeedback (DecNef) Project.

The project determined a unified imaging protocol on 28 February 2014 (https://bicr.atr.jp/rs-

fmri-protocol-2/) and has collected multisite resting-state functional magnetic resonance

imaging (rs-fMRI) data using 14 scanners across eight research institutes for the last 5 y. The

collected dataset encompasses 2,239 participants and five disorders and is publicly shared

through the SRPBS multisite multidisorder database (https://bicr-resource.atr.jp/decnefpro/).

This project has enabled the identification of resting-state functional connectivity MRI (rs-

fcMRI)-based biomarkers of several psychiatric disorders that can be generalized to completely

independent cohorts [2, 8–10]. However, a multisite dataset with multiple disorders raises dif-

ficult problems that are not present in a single site–based dataset (e.g., HCP and UK Biobank).

Harmonization of resting-state functional MRI data across multiple imaging sites
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That is, our experience in the SRPBS database demonstrated difficulties in differences due to

scanner type, imaging protocol, and patient demographics [10–13], even when a unified proto-

col was determined. Moreover, unpredictable differences in participant population can often

exist between sites. Therefore, researchers must work with heterogeneous neuroimaging data.

In particular, site differences represent a barrier when extracting disease factors by applying

machine-learning techniques to such heterogeneous data [14] because disease factors tend to

be confounded with site factors [2, 8, 10–13, 15]. This confounding occurs because a single site

(or hospital) is apt to sample only a few types of psychiatric disorders (e.g., primarily schizo-

phrenia [SCZ] and autism spectrum disorder [ASD] from sites A and B, respectively).

Although robust generalization across sites could be possible as long as the pattern of the dis-

ease factors is sufficiently different from the pattern due to the site differences [11], these fac-

tors depend on dataset and type of disease. To properly manage these heterogeneous data, it is

important for them to be harmonized between sites [16–19]. Moreover, a deeper understand-

ing of these site differences is essential for efficient harmonization of the data.

Site differences consist of two types of biases: engineering bias (measurement bias) and bio-

logical bias (sampling bias). Measurement bias includes differences in the properties of MRI

scanners—such as imaging variables, field strength, MRI manufacturers, and scanner models

—whereas sampling bias refers to differences in participant groups between sites. In this study,

we used the word “bias” to indicate a systematic shift from the global population at a given site

or with given imaging variables. Previous studies have investigated the effect of measurement

bias on resting-state functional connectivity by using a traveling-subject design [20], wherein

multiple participants travel to multiple sites to assess measurement bias [7]. By contrast,

researchers to date have only speculated about sampling bias. For example, differences in the

clinical characteristics of patients examined at different sites are presumed to underlie the stag-

nant accuracy of certain biomarkers, even after combining data from multiple sites [12]. Fur-

thermore, to the best of our knowledge, no study has mathematically defined sampling bias or

conducted quantitative analyses of its effect size, which is likely because the decomposition of

site differences into measurement bias and sampling bias is a complex process. To achieve this

aim, we combined a separate traveling-subject rs-fMRI dataset with the SRPBS multidisorder

dataset. Simultaneous analysis of the datasets enabled us to divide site differences into mea-

surement bias and sampling bias and quantitatively compare their effect sizes on resting-state

functional connectivity with those of psychiatric disorders.

Furthermore, our detailed analysis of measurement and sampling biases enabled us to

investigate the origin of each bias in multisite datasets for the first time. For measurement bias,

we quantitatively compared the magnitude of the effects between different imaging variables,

fMRI manufacturers, and the number of channels per coil in each fMRI scanner. We further

examined two alternative hypotheses regarding the mechanisms underlying sampling bias:

one hypothesis assumes that each site samples subjects from a common population. In this sit-

uation, sampling bias occurs because of the random sampling of subjects, which results in inci-

dental differences in the patients’ characteristics among the sites. The second hypothesis

assumes that each site samples subjects from different subpopulations. In this situation, sam-

pling bias occurs because of sampling from subpopulations with different characteristics. For

example, assume multiple sites plan to collect data from the same population of patients with

major depressive disorder (MDD). Subtypes of MDD exist within the population, such as atyp-

ical depression and melancholic depression [21, 22]; therefore, one subpopulation may contain

a large proportion of patients with atypical depression, whereas another subpopulation may

contain a large proportion of patients with melancholic depression. Therefore, in some

instances, atypical depression may be more frequent among patients at site A, whereas melan-

cholic depression may be more frequent among patients at site B. The basic protocol for

Harmonization of resting-state functional MRI data across multiple imaging sites
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collecting large-scale datasets differs between these two hypotheses; thus, it is necessary to

determine the hypothesis that most appropriately reflects the characteristics of the SRPBS data-

set. In the former situation, one would simply need to collect data from a large number of indi-

viduals, even with a small number of sites. In the latter situation, a larger number of sites

would be required to obtain truly representative data.

To overcome the limitations associated with site differences, we developed a novel harmo-

nization method that enabled us to subtract only the measurement bias by using a traveling-

subject dataset. We investigated the extent that our proposed method could reduce measure-

ment bias and improve the signal-to-noise ratio. We compared its performance to those of

other commonly used harmonization methods. All data utilized in this study can be down-

loaded publicly from the DecNef Project Brain Data Repository at https://bicr-resource.atr.jp/

decnefpro/.

Results

Datasets

We used two rs-fMRI datasets: (1) the SRPBS multidisorder dataset and (2) a traveling-subject

dataset.

SRPBS multidisorder dataset. This dataset included patients with five different disorders

and healthy controls (HCs) who were examined at nine sites belonging to eight research insti-

tutions. A total of 805 participants were included: 482 HCs from nine sites, 161 patients with

MDD from five sites, 49 patients with ASD from one site, 65 patients with obsessive-compul-

sive disorder (OCD) from one site, and 48 patients with SCZ from three sites (Table 1). The rs-

fMRI data were acquired using a unified imaging protocol at all but three sites (Table 2;

https://bicr.atr.jp/rs-fmri-protocol-2/). Site differences in this dataset included both measure-

ment and sampling biases (Fig 1A). For bias estimation, we only used data obtained using the

unified protocol. (Patients with OCD were not scanned using this unified protocol; therefore,

a disorder factor could not be estimated for OCD.)

Traveling-subject dataset. We acquired a traveling-subject dataset to estimate measure-

ment bias across sites in the SRPBS dataset. Nine healthy participants (all men; age range: 24–

32 y; mean age: 27 ± 2.6 y) were scanned at each of 12 sites, which included the nine sites in

the SRPBS dataset, and produced a total of 411 scan sessions (see “Participants” in the Methods

section). Although we had attempted to acquire this dataset using the same imaging protocol

as that in the SRPBS multidisorder dataset, there were some differences in the imaging proto-

col across sites because of limitations in variable settings or the scanning conventions of each

site (S1 Table). There were two phase-encoding directions (posterior to anterior [P!A] and

anterior to posterior [A!P]), three MRI manufacturers (Siemens, GE, and Philips), four num-

bers of channels per coil (8, 12, 24, and 32), and seven scanner types (TimTrio, Verio, Skyra,

Spectra, MR750W, SignaHDxt, and Achieva). Site differences in this dataset included mea-

surement bias only as the same nine participants were scanned across the 12 sites (Fig 1B).

Calculation of rs-fMRI functional connectivity

We computed the region of interest (ROI)-based pairwise correlations as a measure of func-

tional connectivity. For each participant, the temporal correlations of rs-fMRI blood-oxygen-

level dependent (BOLD) signals between pairs of ROIs were computed after averaging each

voxelwise BOLD signal in each ROI. There are some candidates for the measure of functional

connectivity such as the tangent method and partial correlation [11, 23]; however, we used

Pearson’s correlation coefficients because they have been the most commonly used values in

previous studies. Functional connectivity was defined based on a functional brain atlas

Harmonization of resting-state functional MRI data across multiple imaging sites
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consisting of 268 nodes (regions) covering the whole brain, which has been widely utilized in

previous studies [20, 24–26]. The Fisher’s z-transformed Pearson’s correlation coefficients

between the preprocessed BOLD signal time courses of each possible pair of nodes were calcu-

lated and used to construct 268 × 268 symmetrical connectivity matrices in which each ele-

ment represents a connection strength, or edge, between two nodes. We used 35,778

connectivity values [(268 × 267)/2] of the lower triangular part of the connectivity matrix. To

briefly investigate any site effect on functional connectivity, we applied a one-way ANOVA

with Site (9 sites) as a factor to the functional connections in the SRPBS multidisorder dataset

and recorded the number of significant differences between sites. We set the threshold to

p< 0.05, after Bonferroni correction. As a result, >30% of all connections (11,888/35,778)

were significantly different between sites.

Bias estimation

To quantitatively investigate the site differences in the rs-fcMRI data, we identified measure-

ment biases, sampling biases, and disorder factors. We defined measurement bias for each site

as a deviation of the connectivity value for each functional connection from its average across

Table 2. Imaging protocols for resting-state fMRI in the SRPBS multidisorder dataset.

Site ATT ATV COI HUH HKH KPM SWA KUT UTO

MRI scanner Siemens

TimTrio

Siemens

Verio

Siemens

Verio

GE

SignaHDxt

Siemens

Spectra

Philips

Achieva

Siemens

Verio

Siemens

TimTrio

GE

MR750w

Magnetic field

strength

3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T 3.0 T

Number of

channels per coil

12 12 12 8 12 8 12 32 24

Field of view (mm) 212 × 212 212 × 212 212 × 212 256 × 256 192 × 192 192 × 192 212 × 212 212 × 212 212 × 212

Matrix 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64

Number of slices 40 or 39 39 40 32 38 39 40 40 40

Number of

volumes

240 240 240 143 107 194 240 240 240

In-plane resolution

(mm)

3.3125 × 3.3125 3.3125 × 3.3125 3.3125 × 3.3125 4.0 × 4.0 3.0 × 3.0 3.0 × 3.0 3.3125 × 3.3125 3.3125 × 3.3125 3.3125 × 3.3125

Slice thickness

(mm)

3.2 3.2 3.2 4.0 3.0 3.0 3.2 3.2 3.2

Slice gap (mm) 0.8 0.8 0.8 0 0 0 0.8 0.8 0.8

TR (ms) 2,500 2,500 2,500 2,000 2,700 2,000 2,500 2,500 2,500

TE (ms) 30 30 30 27 31 30 30 30 30

Total scan time

(min:s)

10:00 10:00 10:00 5:00 5:00 6:30 10:00 10:00 10:00

Flip angle (deg) 80 80 80 90 90 80 80 80 80

Slice acquisition

order

Ascending Ascending Ascending Ascending

(Interleaved)

Ascending Ascending Ascending Ascending Ascending

Phase encoding PA PA AP PA AP AP PA PA PA

Eye closed/fixate Fixate Fixate Fixate Fixate Fixate Closed Fixate Fixate Fixate

Abbreviations: AP, anterior to posterior; ATT, Siemens TimTrio scanner at Advanced Telecommunications Research Institute International; ATV, Siemens Verio

scanner at Advanced Telecommunications Research Institute International; COI, Center of Innovation in Hiroshima University; fMRI, functional magnetic resonance

imaging; HKH, Hiroshima Kajikawa Hospital; HUH, Hiroshima University Hospital; KPM, Kyoto Prefectural University of Medicine; KUT, Siemens TimTrio scanner

at Kyoto University; PA, posterior to anterior; SRPBS: Strategic Research Program for Brain Sciences; SWA, Showa University; TR, repetition time; TE, echo time; UTO,

University of Tokyo.

https://doi.org/10.1371/journal.pbio.3000042.t002
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all sites. We assumed that the sampling biases of the HCs and patients with psychiatric disor-

ders differed from one another. Therefore, we calculated the sampling biases for each site sepa-

rately for HCs and patients with each disorder. Disorder factors were defined as deviations

from the HC values. Sampling biases were estimated for patients with MDD and SCZ because

only these patients were sampled at multiple sites. Disorder factors were estimated for MDD,

SCZ, and ASD because patients with OCD were not scanned using the unified protocol.

It is difficult to separate site differences into measurement and sampling biases using the

SRPBS multidisorder dataset alone because these two types of bias covaried across sites. Differ-

ent samples (participants) were scanned using different variables (scanners and imaging proto-

cols). In contrast, the traveling-subject dataset included only measurement bias because the

participants were fixed. By combining the traveling-subject dataset with the SRPBS multidisor-

der dataset, we simultaneously estimated measurement bias and sampling bias as different fac-

tors are affected by different sites. We utilized a constrained linear regression model to assess

the effects of both types of bias and disorder factors on functional connectivity, as follows. In

the regression model for the SRPBS multidisorder dataset, the connectivity values of each

Fig 1. Schematic examples illustrating the two main datasets. (a) The SRPBS multidisorder dataset includes patients with psychiatric disorders and healthy controls.

The number of patients and scanner types differed among sites. Thus, site differences consist of sampling bias and measurement bias. (b) The traveling-subject dataset

includes only healthy controls, and the participants were the same across all sites. Thus, site differences consist of measurement bias only. SRPBS, Strategic Research

Program for Brain Sciences.

https://doi.org/10.1371/journal.pbio.3000042.g001
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participant in the SRPBS multidisorder dataset were composed of the sum of the average con-

nectivity values across all participants and all sites at baseline, measurement bias, sampling

bias, and disorder factors. The combined effect of participant factors (individual difference)

and scan-to-scan variations was regarded as noise. In the regression model for the traveling-

subject dataset, the connectivity values of each participant for a specific scan in the traveling-

subject dataset were composed of the sum of the average connectivity values across all partici-

pants and all sites, participant factors, and measurement bias. Scan-to-scan variation was

regarded as noise. For each participant, we defined the participant factor as a deviation of con-

nectivity values from the average across all participants. We estimated all biases and factors by

simultaneously fitting the aforementioned two regression models to the functional connectiv-

ity values of the two different datasets. For this regression analysis, we used data from partici-

pants scanned using a unified imaging protocol in the SRPBS multidisorder dataset and from

all participants in the traveling-subject dataset. In summary, each bias or each factor was esti-

mated as a vector that included a dimension reflecting the number of connectivity values

(35,778). Vectors included in our further analyses are those for measurement bias at 12 sites,

sampling bias of HCs at six sites, sampling bias for patients with MDD at three sites, sampling

bias for patients with SCZ at three sites, participant factors of nine traveling subjects, and dis-

order factors for MDD, SCZ, and ASD. Note that since patients with ASD were scanned at one

site, we could not estimate the sampling bias of ASD. Thus, the sampling bias was included in

the disorder factor of ASD. For each connectivity, the regression model can be written as fol-

lows:

Connectivity ¼ xm
Tmþ xshc

Tshc þ xsmdd

Tsmdd þ xsscz
Tsscz þ xd

Td þ xp
Tpþ const þ e;

where m represents the measurement bias (12 sites × 1), shc represents the sampling bias of

HCs (6 sites × 1), smdd represents the sampling bias of patients with MDD (3 sites × 1), sscz rep-

resents the sampling bias of patients with SCZ (3 sites × 1), d represents the disorder factor

(3 × 1), p represents the participant factor (9 traveling subjects × 1), const represents the aver-

age functional connectivity value across all participants from all sites, and e � N ð0; g� 1Þ repre-

sents noise. xm; xshc ; xsmdd
; xsscz ; xd; xp are vectors represented by 1-of-K binary coding (more

details are reported in “Estimation of biases and factors” in the Methods section). To eliminate

the uncertainty of the constant term, we estimated measurement bias and each sampling bias

by imposing constraints so that their average across sites would be 0.

Quantification of site differences

To quantitatively evaluate the magnitude of the effect of measurement and sampling biases on

functional connectivity, we compared the magnitudes of both types of bias (m, shc, smdd, and

sscz) with the magnitudes of psychiatric disorders (d) and participant factors (p). For this pur-

pose, we investigated the magnitude distribution of both biases, as well as the effects of psychi-

atric disorders and participant factors on functional connectivity over all 35,778 elements in a

35,778-dimensional vector (see S1 Text, S1A and S1B Fig). To quantitatively summarize the

magnitude of the effect of each factor, we calculated the first, second, and third statistical

moments of each distribution (Fig 2A). Based on the mean values and cube roots of the third

moments, all distributions could be approximated as bilaterally symmetric with a mean of

zero. Thus, distributions with larger squared roots of the second moments (standard devia-

tions) affect more connectivities with larger effect sizes (Fig 2B). The value of the standard

deviation was largest for the participant factor (0.0662), followed by these values for the mea-

surement bias (0.0411), the SCZ factor (0.0377), the MDD factor (0.0328), the ASD factor

(0.0297), the sampling bias for HCs (0.0267), sampling bias for patients with SCZ (0.0217),

Harmonization of resting-state functional MRI data across multiple imaging sites
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and sampling bias for patients with MDD (0.0214). To compare the sizes of the standard

deviation of the magnitude distribution between participant factors and measurement bias,

we evaluated the variance of each distribution. All pairs of variances were analyzed using

Ansari–Bradley tests. Our findings indicated that the variances of magnitude distributions

in 10 of 12 measurement biases were significantly larger than in the MDD factor; the vari-

ances of magnitude distributions in seven of 12 measurement biases were significantly

larger than in the SCZ factor; and the variances of all magnitude distributions in measure-

ment biases were significantly larger than the variance of the MDD factor (S6 Table). The

largest variance of magnitude distribution in the sampling bias was significantly larger than

in the MDD factor (S7 Table). Variances of magnitude distributions in all participant fac-

tors were significantly larger than that in all measurement biases (9 participant factors × 12

measurement biases = 108 pairs; W�: mean = –59.80, maximum = –116.81, minimum = –

3.69; p-value after Bonferroni correction: maximum = 0.011, minimum = 0, n = 35,778).

The standard deviation of the magnitude distribution in the participant factor was approxi-

mately twice that in the SCZ, MDD, and ASD factors. To investigate similarity in the pat-

terns of effect on functional connectivity between the measurement bias and the disorder

factors, we next calculated Pearson’s correlation coefficients between the 12 measurement

biases and the factors of three diseases. As a result, we found a significant correlation

(mean = 0.13 ± 0.08 [1SD], one-sample t test applied to absolute correlation value: t = 9.26,

p< 1.0×10−10, df = 35), and maximum value was |r| = 0.31 (between the MDD factor and

the measurement bias of Showa University [SWA]). This result indicates that the pattern of

the measurement bias on functional connectivity was not sufficiently different from the pat-

terns of disorder factors in our dataset.

Furthermore, to quantitatively verify the magnitude relationship among factors, we calcu-

lated and compared the contribution size to determine the extent to which each bias type and

factor explains the variance of the data in our linear model (Fig 2C). After fitting the model,

the b-th connectivity from subject a can be written as follows:

Connectivitya;b ¼ xam
Tmb þ xashc

Tsbhc þ xasmdd

Tsbmdd þ xasscz
Tsbscz þ xad

Tdb
þ xap

Tpb þ const þ e:

For example, the contribution size of measurement bias (i.e., the first term) in this model was

calculated as

Contribution sizem

¼
1

Nm

1

Ns � N

XNs

a¼1

XN

b¼1

ðxamTmbÞ
2

ðxamTmbÞ
2
þ ðxashc

TsbhcÞ
2
þ ðxasmdd

TsbmddÞ
2
þ ðxasscz

TsbsczÞ
2
þ ðxadTd

b
Þ

2
þ ðxapTpbÞ

2
þ e2

;

in which Nm represents the number of components for each factor, N represents the number

of connectivities, Ns represents the number of subjects, and Contribution sizem represents the

magnitude of the contribution size of measurement bias. This formula was used to assess the

contribution sizes of individual factors. The results were consistent with the analysis of the

standard deviation (Fig 2A, middle).

These results indicated that the effect size of the measurement bias on functional connectiv-

ity is smaller than that of the participant factor but is mostly larger than the disorder factors,

which suggested that measurement bias represents a serious limitation in research regarding

psychiatric disorders. Furthermore, the effect sizes of the sampling biases were comparable

with those of the disorder factors. This finding indicates that sampling bias also represents a

major limitation in psychiatric research. In addition, the effect size of the participant factor

was much greater than that among patients with SCZ, MDD, or ASD. Such relationships make

the development of rs-fcMRI-based classifiers of psychiatric or developmental disorders very

Harmonization of resting-state functional MRI data across multiple imaging sites
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challenging. If the disorder factor and site factor are confounded in functional connections, to

develop robust and generalizable classifiers across multiple sites, we have to select disorder-

specific and site-independent abnormal functional connections [2, 8–10, 15].

Fig 2. Statistics of magnitude distributions for each type of bias and each factor. (a) The means, standard deviations, and third moments standardized to the same

scale on the vertical axis (i.e., cube root) for each type of bias and each factor. Bars represent the average value, and the error bars represent the standard deviation across

sites or participants. Each data point represents one participant or one site. (b) Schematic examples illustrating the magnitude distribution. (c) Contribution size of each

bias and each factor. The numerical data used in this figure are included in S1 Data. ASD, autism spectrum disorder; HC, healthy control; MDD, major depressive

disorder; SCZ, schizophrenia.

https://doi.org/10.1371/journal.pbio.3000042.g002
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Brain regions contributing most to biases and associated factors

To evaluate the spatial distribution of the two types of bias and all factors in the whole brain,

we utilized a previously described visualization method [27] to project connectivity informa-

tion to anatomical ROIs. First, we quantified the effect of a bias or a factor on each functional

connectivity as the median of its absolute values across sites or participants. Thus, we obtained

35,778 values, each of which was associated with one connectivity and represented the effect of

a bias or factor on the connectivity. Next, we summarized these effects on connectivity for

each ROI by averaging the values of all connectivities connected with the ROI (see “Spatial

characteristics of measurement bias, sampling bias, and each factor in the brain” in the Meth-

ods section). The average value represents the extent the ROI contributes to the effect of a bias

or factor. By repeating this procedure for each ROI and coding the averaged value based on

the color of an ROI, we were able to visualize the relative contribution of individual ROIs to

each bias or factor in the whole brain (Fig 3). Consistent with the findings of previous studies,

the effect of the participant factor was large for several ROIs in the cerebral cortex, especially

in the prefrontal cortex, but small in the cerebellum and visual cortex [24]. The effect of mea-

surement bias was large in inferior brain regions where functional images are differentially dis-

torted depending on the phase-encoding direction [28, 29]. Connections involving the medial

dorsal nucleus of the thalamus were also heavily affected by both MDD, SCZ, and ASD. Effects

of the MDD factor were observed in the dorsomedial prefrontal cortex and superior temporal

gyrus, in which abnormalities have also been reported in previous studies [22, 30, 31]. Effects

of the SCZ factor were observed in the left inferior parietal lobule, bilateral anterior cingulate

cortices, and left middle frontal gyrus, in which abnormalities have been reported in previous

studies [32–34]. Effects of the ASD factor were observed in the putamen, the medial prefrontal

cortex, and the right middle temporal gyrus, in which abnormalities have also been reported in

previous studies [10, 11, 35]. The effect of sampling bias for HCs was large in the inferior parie-

tal lobule and the precuneus, both of which are involved in the default-mode network and the

middle frontal gyrus. Sampling bias for disorders was large in the medial dorsal nucleus of the

thalamus, left dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and cerebellum for

MDD [22] and in the prefrontal cortex, cuneus, and cerebellum for SCZ [33].

Characteristics of measurement bias

We next investigated the characteristics of measurement bias. We first examined whether simi-

larities among the estimated measurement bias vectors for the 12 included sites reflect certain

properties of MRI scanners such as phase-encoding direction, MRI manufacturer, coil type,

and scanner type. We used hierarchical clustering analysis to discover clusters of similar pat-

terns for measurement bias. We used “correlation” as a distance metric for hierarchical cluster-

ing. This method has previously been used to distinguish subtypes of MDD, based on rs-

fcMRI data [22]. As a result, the measurement biases of the 12 sites were divided into phase-

encoding direction clusters at the first level (Fig 4A). They were divided into fMRI manufac-

turer clusters at the second level and further divided into coil type clusters, followed by scanner

model clusters. Furthermore, we quantitatively verified the relationship magnitude among fac-

tors by using the same model to assess the contribution of each factor (Fig 4B; see “Quantifica-

tion of site differences” in the Results section or “Analysis of contribution size” in the Methods

section). The contribution size was largest for the phase-encoding direction (0.0391), followed

by the contribution sized for fMRI manufacturer (0.0318), coil type (0.0239), and scanner

model (0.0152). These findings indicate that the main factor influencing measurement bias is

the difference in the phase-encoding direction, followed by fMRI manufacturer, coil type, and

scanner model, respectively.
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Sampling bias is because of sampling from among a subpopulation

We investigated two alternative models for the mechanisms underlying sampling bias. In the

single-population model, which assumes that participants are sampled from a common popu-

lation (Fig 5A), the functional connectivity values of each participant were generated from a

Gaussian distribution, with a mean of 0 and variance of ξ2 for each connectivity value. Then,

Fig 3. Spatial distribution of each type of bias and each factor in various brain regions. Mean effects of connectivity for all 268 ROIs. For each ROI, the mean effects

of all functional connections associated with that ROI were calculated for each bias and each factor. Warmer (red) and cooler (blue) colors correspond to large and small

effects, respectively. The magnitudes of the effects are normalized within each bias or each factor (z-score). The numerical data used in this figure are included in S1

Data. ASD, autism spectrum disorder; HC, healthy control; MDD, major depressive disorder; ROI, region of interest; SCZ, schizophrenia.

https://doi.org/10.1371/journal.pbio.3000042.g003
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the functional connectivity vector for participant j at site k can be described as

ckj � N ð0; x2IÞ:

In the different-subpopulation model, which assumes that sampling bias occurs partly because

participants are sampled from different subpopulations at each site (Fig 5B), we assumed that

the functional connectivity values of each participant were generated from a different indepen-

dent Gaussian distribution, with an average of βk and a variance of ξ2 depending on the popu-

lation of each site. In this situation, the functional connectivity vector for participant j at site k
can be described as

ckj � N ðβk; x
2IÞ:

Here, we assume that the average of the population βk is sampled from an independent Gauss-

ian distribution with an average of 0 and a variance of σ2.

It is necessary to determine which model is more suitable for collecting big data across mul-

tiple sites: If the former model is correct, then the data can be used to represent a population

by increasing the number of participants, even if the number of sites is small. If the latter

model is correct, data should be collected from many sites, as a single site does not represent

the true grand population distribution, even with a very large sample size.

For each model, we first investigated how the number of participants at each site deter-

mined the effect of sampling bias on functional connectivity. We measured the magnitude of

the effect, based on the variance values for sampling bias across functional connectivity (see

the “Quantification of site differences” section). We used variance instead of the standard devi-

ation to simplify the statistical analysis, although there is essentially no difference based on

which value is used. We theorized that each model represents a different relationship between

Fig 4. Clustering dendrogram for measurement bias. (a) The height of each linkage in the dendrogram represents the dissimilarity (1 − r) between the clusters joined

by that link. (b) Contribution size of each factor. The numerical data used in this figure are included in S1 Data. ATT, Siemens TimTrio scanner at Advanced

Telecommunications Research Institute International; ATV, Siemens Verio scanner at Advanced Telecommunications Research Institute International; COI, Center of

Innovation in Hiroshima University; fMRI, functional magnetic resonance imaging; HKH, Hiroshima Kajikawa Hospital; HUH, Hiroshima University Hospital; KPM,

Kyoto Prefectural University of Medicine; KUS, Siemens Skyra scanner at Kyoto University; KUT, Siemens TimTrio scanner at Kyoto University; SWA, Showa

University; UTO, University of Tokyo; YC1, Yaesu Clinic 1; YC2, Yaesu Clinic 2.

https://doi.org/10.1371/journal.pbio.3000042.g004
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the number of participants and the variance of sampling bias. Therefore, we investigated which

model best represents the actual relationships in our data by comparing the corrected Akaike

information criterion (AICc) [36, 37] and Bayesian information criterion (BIC). Moreover, we

performed leave-one-site-out cross-validation evaluations of predictive performance in which all

but one site was used to construct the model, and the variance of the sampling bias was predicted

for the remaining site. We then compared the predictive performances between the two models.

Our results indicated that the different-subpopulation model provided a better fit for our data

than the single-population model (Fig 5C; different-subpopulation model: AICc = –108.80 and

Fig 5. Comparison of the two models of sampling bias. Schematic examples illustrating the (a) Single-population and (b) Different-subpopulation models and (c) The

results of model fitting. The x axis represents the number of participants on a logarithmic scale, and the y axis represents the variance of sampling bias on a logarithmic

scale. The broken line represents the prediction of the single-population model, whereas the solid line represents the prediction of the different-subpopulation model.

Each data point represents one site. (d) Results of the predictions determined by using each model. The x axis represents the actual variance, and the y axis represents the

predicted variance. Open triangles correspond to the single-population model, whereas filled squares correspond to the different-subpopulation model. (e) Performance

of prediction using the two models, based on the absolute error between the actual and predicted variance. The numerical data used in this figure are included in S1

Data. ATT, Siemens TimTrio scanner at Advanced Telecommunications Research Institute International; ATV, Siemens Verio scanner at Advanced

Telecommunications Research Institute International; COI, Center of Innovation in Hiroshima University; KUT, Siemens TimTrio scanner at Kyoto University; SWA,

Showa University; UTO, University of Tokyo.

https://doi.org/10.1371/journal.pbio.3000042.g005
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BIC = –113.22; single-population model: AICc = –96.71 and BIC = –97.92). Furthermore, the pre-

dictive performance was significantly higher for the different-subpopulation model than for the

single-population model (one-tailed Wilcoxon signed rank test applied to absolute errors:

Z = 1.67, p = .0469, n = 6; Fig 5D and 5E). This result indicates that sampling bias is caused not

only by random sampling from a single grand population, depending on the number of partici-

pants among sites, but also by sampling from among different subpopulations. Sampling biases

thus represent a major limitation in attempting to estimate a true single distribution of HC or

patient data based on measurements obtained from a finite number of sites and participants.

Visualization of the effect of harmonization

Since our results indicated that the patterns of the measurement bias on functional connectiv-

ity were not sufficiently different from the patterns of disorder factors, we need harmonization

to properly subtract the measurement bias. Therefore, we next developed a novel harmoniza-

tion method that enabled us to subtract measurement bias alone using the traveling-subject

dataset. Using a constrained linear regression model, we estimated measurement bias sepa-

rately from sampling bias (see “Bias estimation” in the Methods section). Thus, we could

remove the measurement bias from the SRPBS multidisorder dataset (i.e., traveling-subject

method, see “Traveling-subject harmonization” in the Methods section).

To visualize the site differences and disorder effects in the SRPBS multidisorder dataset

while maintaining its quantitative properties, we first performed an unsupervised dimension

reduction of the raw rs-fcMRI data using a principal component analysis (PCA). All partici-

pant data in the SRPBS multidisorder dataset were plotted on two axes consisting of the first

two principal components (PCs) (Fig 6A, small, light-colored symbols). The first two PCs

could explain approximately 6% of the variance in the whole data (Fig 6B, 3.5% and 2.5% for

the first and second PC, respectively). Dark-colored markers indicated the averages of pro-

jected data across HCs in each site and the average within each psychiatric disorder in the sub-

space spanned by the two components. For the raw data, there was a clear separation of the

Hiroshima University Hospital (HUH) site for PC1, which explained most of the variance in

the data. To visualize the effects of the harmonization process, we plotted the data after sub-

tracting only the measurement bias from the SRPBS multidisorder dataset (Fig 6C). In Fig 6C,

the differences among sites represent the sampling bias. Relative to the result of raw data,

which reflects the data before harmonization, the HUH site moved much closer to the origin

(i.e., grand average) and showed no marked separation from the other sites. This result indi-

cated that the separation of the HUH site observed in Fig 6A was caused by measurement bias,

which was removed by the harmonization. Furthermore, harmonization was effective in dis-

tinguishing patients and HCs scanned at the same site. Since patients with ASD were only

scanned at the SWA site, the averages for these patients (▲) and HCs (blue ●) scanned at this

site were projected to nearly identical positions (Fig 6A). However, the two symbols are clearly

separated from one another in Fig 6C. The effect of a psychiatric disorder (ASD) could not be

observed in the first two PCs without harmonization but became detectable following the

removal of measurement bias. Finally, to visualize the measurement bias in the SRPBS multidi-

sorder dataset, we plotted the data after subtracting only the sampling bias from the SRPBS

multidisorder dataset (Fig 6D). Relative to the harmonized data results, the HUH site showed

marked separation from the other sites, which was similar to the raw data (Fig 6A).

Quantification of the effect of traveling-subject harmonization

To correct difference among sites, there are three commonly used harmonization methods: (1)

a ComBat method [16, 17, 19, 38], a batch-effect correction tool commonly used in genomics,

Harmonization of resting-state functional MRI data across multiple imaging sites

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000042 April 18, 2019 15 / 34

https://doi.org/10.1371/journal.pbio.3000042


Fig 6. PCA dimension reduction in the SRPBS multidisorder dataset. Comparison among (a) Raw data, (c) Harmonized data (measurement bias subtracted data),

and (d) Sampling bias subtracted data. All participants in the SRPBS multidisorder dataset projected into the first two PCs, as indicated by small, light-colored markers.

Dark-colored markers indicate the averages of the projected data across healthy controls at each site and the average within each psychiatric disorder in the subspace

spanned by the two components. The color of the marker represents the site, whereas the shape represents the psychiatric disorder. (b) The pareto plot of the PCA

decomposition for raw data. The pareto plot shows how much variance is explained by each principal component. The numerical data used in this figure are included in

S1 Data. ASD, autism spectrum disorder; ATT, Siemens TimTrio scanner at Advanced Telecommunications Research Institute International; ATV, Siemens Verio

scanner at Advanced Telecommunications Research Institute International; COI, Center of Innovation in Hiroshima University; GE, GE functional magnetic resonance

imaging; HKH, Hiroshima Kajikawa Hospital; HUH, Hiroshima University Hospital; KPM, Kyoto Prefectural University of Medicine; KUT, Siemens TimTrio scanner

at Kyoto University; MDD, major depressive disorder; OCD, obsessive compulsive disorder; PC, principal component; PCA, PC analysis; PHI, Philips functional
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site difference was modeled and removed; (2) a generalized linear model (GLM) method, site

difference was estimated without adjusting for biological covariates (diagnosis) [16, 18, 22];

and (3) an adjusted GLM method, site difference was estimated while adjusting for biological

covariates [16, 18] (see “Harmonization procedures” in the Methods section). However, all

these methods estimate site difference without separating it into measurement and sampling

biases and subtracting the site difference from the data. Therefore, existing harmonization

methods might have pitfalls that eliminate both biologically meaningless measurement bias

and biologically meaningful sampling bias. Here, we tested whether the traveling-subject

harmonization method indeed removes only the measurement bias and whether the existing

harmonization methods simultaneously remove the measurement and sampling biases. Specif-

ically, we performed 2-fold cross-validation evaluations in which the SRPBS multidisorder

dataset was partitioned into two equal-size subsamples (fold1 data and fold2 data) with the

same proportions of sites. Between these two subsamples, the measurement bias is common,

but the sampling bias is different, because the scanners are common and participants are dif-

ferent. We estimated the measurement bias (or site difference including the measurement bias

and the sampling bias for the existing methods) by applying the harmonization methods to the

fold1 data and subtracting the measurement bias or site difference from the fold2 data. Next,

we estimated the measurement bias in the fold2 data. For the existing harmonization methods,

if the site difference estimated using fold1 contained only the measurement bias, the measure-

ment bias estimated in fold2 data after subtracting the site difference should be smaller than

without subtracting the site difference (Raw). To separately estimate measurement bias and

sampling bias in both subsamples while avoiding information leaks, we also divided the travel-

ing-subject dataset into two equal-size subsamples with the same proportions of sites and sub-

jects. We concatenated one subsample of traveling-subject dataset to fold1 data to estimate the

measurement bias for traveling-subject method (estimating dataset) and concatenated the

other subsample of traveling-subject dataset to fold2 data for testing (testing dataset). That is,

in the traveling-subject harmonization method, we estimated the measurement bias using the

estimating dataset and removed the measurement bias from the testing dataset. By contrast, in

the other harmonization methods, we estimated the site difference using the fold1 data (not

including the subsample of traveling-subject dataset) and removed the site difference from the

testing dataset. We then estimated the measurement bias using the testing dataset and evalu-

ated the standard deviation of the magnitude distribution of measurement bias calculated in

the same way as described in the “Quantification of site differences” section. To verify whether

important information, such as participant and disorder factors, remained in the testing data-

set, we also estimated these factors and calculated the ratio of the standard deviation of the

magnitude distribution of the measurement bias to each participant and disorder factor as sig-

nal-to-noise ratios. This procedure was performed again by exchanging the estimating dataset

and the testing dataset (see “Twofold cross-validation evaluation procedure” in the Methods

section).

Fig 7 shows the standard deviation of the magnitude distribution of the measurement bias

and the ratio of the standard deviation of the magnitude distribution of the measurement bias

to that of participant factor and disorder factor in both fold data for the four harmonization

methods and without harmonization (Raw). Our results show the highest reduction of the

standard deviation of the magnitude distribution of the measurement bias from the Raw in the

traveling-subject method when compared with all other methods (29% versus 3% in the

magnetic resonance imaging; SCZ, schizophrenia; SIE, Siemens functional magnetic resonance imaging; SRPBS, Strategic Research Program for Brain Sciences; SWA,

Showa University; UTO, University of Tokyo.

https://doi.org/10.1371/journal.pbio.3000042.g006
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ComBat method). Moreover, improvements in the signal-to-noise ratios were also highest in

our method for the participant factor (41% versus 3% in the ComBat method) and disorder

factor (39% versus 3% in the ComBat method). These results indicated that the traveling-sub-

ject harmonization method removed measurement bias and improved the signal-to-noise

ratios.

Discussion

In the present study, by acquiring a separate traveling-subject dataset and the SRPBS multidi-

sorder dataset, we separately estimated measurement and sampling biases for multiple sites,

which we then compared with the magnitude of disorder factors. Furthermore, we investigated

the origin of each bias in multisite datasets. Finally, to overcome the problem of site differ-

ences, we developed a novel harmonization method that enabled us to subtract the measure-

ment bias by using a traveling-subject dataset and achieved the reduction of the measurement

bias by 29% and improvement of signal-to-noise ratios by 40%.

Previous studies have focused on measurement bias and compared its magnitude to the

participant factor by using a traveling-subject design in a finger-tapping task fMRI [39] and rs-

fMRI [20]. These studies revealed the magnitude of measurement bias is smaller than the par-

ticipant factor. Although such a result was also obtained in this study, the novelty of this study

exists in that we separately estimated measurement and sampling biases and then compared

them with the magnitude of disorder factors. Our findings indicated that measurement bias

exerted significantly greater effects than disorder factors, whereas sampling bias was compara-

ble with (or even larger than) the disorder effects (Fig 2). Although our effect-size analysis was

univariate, it is important to take perspective of multivariate pattern analysis into account

because biomarker construction is based on the multivariate pattern of functional

Fig 7. Reduction of the measurement bias and improvement of signal-to-noise ratios for different harmonization methods. (a) Standard deviation of the

magnitude distribution of the measurement bias. The error bars represent the standard deviation across sites. Each data point represents one site. (b) Ratio of standard

deviation of the magnitude distribution of the measurement bias to that of the participant factor. (c) Ratio of standard deviation of the magnitude distribution of the

measurement bias to that of the disorder factor. Different colored columns show the results from different harmonization methods. Two columns of the same color

show the results of the two folds. The numerical data used in this figure are included in S1 Data. GLM, generalized linear model.

https://doi.org/10.1371/journal.pbio.3000042.g007
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connectivity. From this view point, if the effect of the measurement bias is orthogonal to that

of the psychiatric disorders, robust generalization across sites might be possible. Actually, pre-

vious research suggested this [11]. However, the orthogonality between the pattern of the dis-

ease factors and that of the measurement bias depends on dataset and type of disease. Since

our results indicated that the pattern of the measurement bias was not sufficiently different

from the patterns of disorder factors, harmonization was important to properly subtract the

measurement bias. This result is a very important finding for future studies that collect rs-

fMRI data from multiple sites and for consideration when constructing biomarkers of psychi-

atric disorders based on multisite data in the clinical field. Our results indicate that it is impor-

tant to consider site differences when we investigate disorder factors using multisite rs-fMRI

data. However, we did not control for variations in disease stage and treatment in our dataset.

Although controlling for such heterogeneity may increase the effect size of disorder factors,

such control is not feasible when collecting big data from multiple sites. Therefore, it is impor-

tant to appropriately remove measurement bias from heterogeneous patient data to identify

relatively small disorder effects. This issue is essential for investigating the relationships among

different psychiatric disorders because disease factors could be confounded by site differences.

As previously mentioned, it is common for a single site to sample only a few types of psychiat-

ric disorders (SCZ and ASD from sites A and B, respectively). This issue is also essential for

constructing biomarkers of psychiatric disorders because classification of subjects can be

achieved by using the information of nonbiological site difference. In this situation, it is critical

to dissociate disease factors from site differences. This dissociation can be accomplished by

subtracting only the measurement bias, which is estimated using the traveling-subject dataset.

Our results indicated that measurement bias is primarily influenced by differences in the

phase-encoding direction, followed by differences in fMRI manufacturer, coil type, and scanner

model (Fig 4). These results are consistent with our finding of large measurement biases in the

inferior brain regions (Fig 3), the functional imaging of which is known to be influenced by the

phase-encoding direction [28, 29]. Previous studies have reported that the effect caused by the dif-

ference in the phase-encoding direction can be corrected using the field map obtained at the time

of imaging [28, 40–42]. The field map was acquired in parts of the traveling-subject dataset; there-

fore, we investigated the effectiveness of field map correction by comparing the effect size of the

measurement bias and the participant factor between functional images with and without field

map correction (see S2 Text). Our prediction was as follows: if field map correction is effective,

the effect of measurement bias will decrease, whereas that of the participant factor will increase

following field map correction. Field map correction using SPM12 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm12) reduced the effect of measurement bias in the inferior brain regions (whole

brain: 3% reduction in the standard deviation of the magnitude distribution of the measurement

bias) and increased the effect of the participant factor in the whole brain (3% increase in the stan-

dard deviation of the magnitude distribution of the participant factor; S2A and S2B Fig). How-

ever, the effect of measurement bias remained large in inferior brain regions (S2A Fig), and

hierarchical clustering analysis revealed that the clusters of the phase-encoding direction remained

dominant (S2C Fig). These results indicate that, even with field map correction, it is largely impos-

sible to remove the influence of differences in phase-encoding direction on functional connectiv-

ity. Thus, harmonization methods are still necessary to remove the effect of these differences and

other measurement-related factors. However, some distortion correction methods have been

developed, such as the top-up method and symmetric normalization [43, 44], and further studies

are required to verify the efficacy of these methods.

Our data supported the different-subpopulation model rather than the single-population

model (Fig 5), which indicates that sampling bias is caused by sampling from among different

subpopulations. Furthermore, these findings suggest that, during big data collection, it is better
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to sample participants from several imaging sites than to sample many participants from a few

imaging sites. These results were obtained only by combining the SRPBS multidisorder data-

base with a traveling-subject dataset (https://bicr.atr.jp/decnefpro/). To the best of our knowl-

edge, the present study is the first to demonstrate the presence of sampling bias in rs-fcMRI

data, the mechanisms underlying this sampling bias, and the effect size of sampling bias on

resting-state functional connectivity, which was comparable to that of psychiatric disorders.

We analyzed sampling bias among HCs only, because the number of sites was too small to con-

duct an analysis of patients with psychiatric diseases.

We developed a novel harmonization method using a traveling-subject dataset (i.e., traveling-

subject method), which was then compared with existing harmonization methods. Our results

demonstrated that the traveling-subject method outperformed other conventional GLM-based

harmonization methods and the ComBat method. The traveling-subject method achieved reduc-

tion in the measurement bias by 29%, compared with 3% in the second highest value for the Com-

Bat method, and improvement in the signal-to-noise ratios by 40%, compared with 3% in the

second highest value for the ComBat method. This result indicates that the traveling-subject data-

set helps us to properly estimate measurement bias and harmonize the rs-fMRI data across imag-

ing sites toward development of a wide range of final applications. As one example of such

applications, we constructed biomarkers for psychiatric disorders based on rs-fcMRI data, which

distinguishes between HCs and patients, and a regression model to predict participants’ age based

on rs-fcMRI data using the SRPBS multidisorder dataset (see “Classifiers for MDD and SCZ,

based on the four harmonization methods” in S5 Text and “Regression models of participant age

based on the four harmonization methods” in S6 Text). We quantitatively evaluated the harmoni-

zation method to investigate the generalization performance to independent validation dataset,

which was not included in the SRPBS multidisorder dataset. Although the ComBat method

achieved the highest performance for the MDD classifier and regression model of age, it was infe-

rior to the raw method for the SCZ classifier. By contrast, the traveling-subject harmonization

method always improved the generalization performance compared with when no harmonization

was performed. This result also indicates that the pattern of the measurement bias on functional

connectivity was not sufficiently different from the patterns of disorder factors in our dataset.

These results indicate that the traveling-subject dataset also helps with constructing a prediction

model based on multisite rs-fMRI data. Future work should improve the traveling-subject method

by incorporating a hierarchical model, such as ComBat.

The present study possesses some limitations of note. The accuracy of measurement bias

estimation may be improved by further expanding the traveling-subject dataset. This can be

achieved by increasing the number of traveling participants or sessions per site. However, as

mentioned in a previous traveling-subject study [20], it is costly and time-consuming to ensure

that numerous participants travel to every site involved in big database projects. Thus, the

cost-performance tradeoff must be evaluated in practical settings. The numbers of traveling

participants and MRI sites used in this study (9 and 12, respectively) were larger than those

used in a previous study (8 and 8, respectively) [20], and the number of total sessions in this

study (411) was more than three times larger than that used in the previous study (128) [20].

Furthermore, although we estimated the measurement bias for each connectivity, hierarchical

models of the brain (e.g., ComBat) may be more appropriate for improving the estimates of

measurement bias. Regarding the number of sites in the data with psychiatric disorders, we

believe that uniqueness of our study exists in the datasets of multiple disorders and multiple

sites with traveling-subject data rather than the number of sites for a single disorder. For exam-

ple, although ABIDE [6, 11] collected the data from patients with ASD from 17 sites, it signifi-

cantly differs from our study because it does not use a unified protocol for data collection and

does not include a traveling-subject dataset. In this study, we have collected the data using a
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unified protocol with HCs from six sites, patients with MDD from three sites, patients with

ASD from one site, patients with SCZ from three sites, patients with OCD from one site, and a

traveling-subject dataset from 12 sites. These datasets enabled us to compare the magnitude of

the effect between site differences (measurement or sampling bias) and multiple disorder fac-

tors, which is the key point of our study. To the best of our knowledge, such a multisite, multi-

disorder rs-fMRI dataset has not existed so far.

In summary, by acquiring a separate traveling-subject dataset and the SRPBS multidisorder

database, we revealed that site differences were composed of biological sampling bias and engi-

neering measurement bias. The effect sizes of these biases on functional connectivity were

greater than or equal to the effect sizes of psychiatric disorders, and the pattern of the measure-

ment bias was not sufficiently different from the patterns of disorder factors, highlighting the

importance of controlling for site differences when investigating psychiatric disorders. Fur-

thermore, using the traveling-subject dataset, we developed a novel traveling-subject method

that harmonizes the measurement bias only by separating sampling bias from site differences.

Our findings verified that the traveling-subject method outperformed conventional GLM-

based harmonization methods and ComBat method. These results suggest that a traveling-sub-

ject dataset can help to harmonize the rs-fMRI data across imaging sites.

Methods

Ethics statement

All participants in all datasets provided written informed consent. All recruitment procedures

and experimental protocols were approved by the institutional review boards of the principal

investigators’ respective institutions (Advanced Telecommunications Research Institute Inter-

national [ATR] [approval numbers: 13–133, 14–133, 15–133, 16–133, 17–133, and 18–133],

Hiroshima University [E-38], Kyoto Prefectural University of Medicine [KPM] [RBMR-C-

1098], SWA [B-2014-019 and UMIN000016134], the University of Tokyo [UTO] Faculty of

Medicine [3150], Kyoto University [C809 and R0027], and Yamaguchi University [H23-153

and H25-85]) and conducted in accordance with the Declaration of Helsinki.

Participants

We used two rs-fMRI datasets for all analyses: (1) the SRPBS multidisorder dataset, which

encompasses multiple psychiatric disorders, and (2) a traveling-subject dataset. The SRPBS

multidisorder dataset contains data for 805 participants (482 HCs from nine sites, 161 patients

with MDD from five sites, 49 patients with ASD from one site, 65 patients with OCD from one

site, and 48 patients with SCZ from three sites) (Table 1). Data were acquired using a Siemens

TimTrio scanner at ATR (ATT), a Siemens Verio scanner at ATR (ATV), a Siemens Verio at

the Center of Innovation in Hiroshima University (COI), a GE SignaHDxt scanner at HUH, a

Siemens Spectra scanner at Hiroshima Kajikawa Hospital (HKH), a Philips Achieva scanner at

KPM, a Siemens Verio scanner at SWA, a Siemens TimTrio scanner at Kyoto University

(KUT), and a GE MR750W scanner at the UTO. Each participant underwent a single rs-fMRI

session for 5–10 min. The rs-fMRI data were acquired using a unified imaging protocol at all

but three sites (Table 2; https://bicr.atr.jp/rs-fmri-protocol-2/). During the rs-fMRI scans, par-

ticipants were instructed as follows, except at one site: “Please relax. Don’t sleep. Fixate on the

central crosshair mark and do not think about specific things.” At the remaining site, partici-

pants were instructed to close their eyes rather than fixate on a central crosshair.

In the traveling-subject dataset, nine healthy participants (all male participants; age range

24–32 y; mean age 27 ± 2.6 y) were scanned at each of 12 sites in the SRPBS consortium, pro-

ducing a total of 411 scan sessions. Data were acquired at the sites included in the SRPBS
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multidisorder database (i.e., ATT, ATV, COI, HUH, HKH, KPM, SWA, KUT, and UTO) and

three additional sites: Kyoto University (KUS; Siemens Skyra) and Yaesu Clinic 1 and 2 (YC1

and YC2; Philips Achieva) (S1 Table). Each participant underwent three rs-fMRI sessions of

10 min each at nine sites, two sessions of 10 min each at two sites (HKH and HUH), and five

cycles (morning, afternoon, next day, next week, and next month) consisting of three 10-min

sessions each at a single site (ATT). In the latter situation, one participant underwent four

rather than five sessions at the ATT site because of a poor physical condition. Thus, a total of

411 sessions were conducted [8 participants × (3 × 9 + 2 × 2 + 5 × 3 × 1) + 1 participant ×
(3 × 9 + 2 × 2 + 4 × 3 × 1)]. During each rs-fMRI session, participants were instructed to main-

tain a focus on a fixation point at the center of a screen, remain still and awake, and to think

about nothing in particular. For sites that could not use a screen in conjunction with fMRI

(HKH and KUS), a seal indicating the fixation point was placed on the inside wall of the MRI

gantry. Although we attempted to ensure imaging was performed using the same variables at

all sites, there were two phase-encoding directions (P!A and A!P), three MRI manufactur-

ers (Siemens, GE, and Philips), four different numbers of channels per coil (8, 12, 24, and 32),

and seven scanner types (TimTrio, Verio, Skyra, Spectra, MR750W, SignaHDxt, and Achieva)

(S1 Table).

Preprocessing and calculation of the resting-state functional connectivity

matrix

The rs-fMRI data were preprocessed using SPM8 implemented in MATLAB (R2016b; Math-

works, Natick, MA, USA). The first 10 s of data was discarded to allow for T1 equilibration.

Preprocessing steps included slice-timing correction, realignment, coregistration, segmenta-

tion of T1-weighted structural images, normalization to Montreal Neurological Institute

(MNI) space, and spatial smoothing with an isotropic Gaussian kernel of 6 mm full-width at

half-maximum. For the analysis of connectivity matrices, ROIs were delineated according to a

268-node gray matter atlas developed to cluster maximally similar voxels [26]. The BOLD sig-

nal time courses were extracted from these 268 ROIs. To remove several sources of spurious

variance, we used linear regression with 36 regression parameters [45] such as six motion

parameters, average signals over the whole brain, white matter, and cerebrospinal fluid. Deriv-

atives and quadratic terms were also included for all parameters. A temporal band-pass filter

was applied to the time series using a first-order Butterworth filter with a pass band between

0.01 Hz and 0.08 Hz to restrict the analysis to low-frequency fluctuations, which are character-

istic of rs-fMRI BOLD activity [45]. Furthermore, to reduce spurious changes in functional

connectivity because of head motion, we calculated framewise displacement (FD) and

removed volumes with FD > 0.5 mm, as proposed in a previous study [46]. The FD represents

head motion between two consecutive volumes as a scalar quantity (the summation of absolute

displacements in translation and rotation). Using the aforementioned threshold, 5.4% ± 10.6%

volumes (mean [approximately 13 volumes] ± 1 SD) were removed per 10 min of rs-fMRI

scanning (240 volumes) in the traveling-subject dataset; 6.2% ± 13.2 volumes were removed

per rs-fMRI session in the SRPBS multidisorder dataset. If the number of volumes removed

after scrubbing exceeded the average of –3 SD across participants in each dataset, the partici-

pants or sessions were excluded from the analysis. As a result, 14 sessions were removed from

the traveling-subject dataset, and 20 participants were removed from the SRPBS multidisorder

dataset. Furthermore, we excluded participants for whom we could not calculate functional

connectivity at all 35,778 connections, primarily because of the lack of BOLD signals within an

ROI. As a result, 99 participants were further removed from the SRPBS multidisorder dataset.
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Estimation of biases and factors

The participant factor (p), measurement bias (m), sampling biases (shc, smdd, sscz), and psychi-

atric disorder factor (d) were estimated by fitting the regression model to the functional con-

nectivity values of all participants from the SRPBS multidisorder dataset and the traveling-

subject dataset. In this instance, vectors are denoted by lowercase bold letters (e.g., m), and all

vectors are assumed to be column vectors. Components of vectors are denoted by subscripts

such asmk. To represent participant characteristics, we used a 1-of-K binary coding scheme in

which the target vector (e.g., xm) for a measurement bias m belonging to site k is a binary vec-

tor with all elements equal to zero—except for element k, which equals 1. If a participant does

not belong to any class, the target vector is a vector with all elements equal to zero. A super-

script T denotes the transposition of a matrix or vector, such that xT represents a row vector.

For each connectivity, the regression model can be written as follows:

Connectivity ¼ xm
Tmþ xshc

Tshc þ xsmdd

Tsmdd þ xsscz
Tsscz þ xd

Td þ xp
Tpþ const þ e;

such that
X9

j
pj ¼ 0;

X12

k
mk ¼ 0;

X6

k
shck ¼ 0;

X3

k
smddk ¼ 0;

X3

k
ssczk ¼ 0; d1ðHCÞ ¼ 0;

in which m represents the measurement bias (12 sites × 1), shc represents the sampling bias of

HCs (6 sites × 1), smdd represents the sampling bias of patients with MDD (3 sites × 1), sscz rep-

resents the sampling bias of patients with SCZ (3 sites × 1), d represents the disorder factor

(3 × 1), p represents the participant factor (9 traveling subjects × 1), const represents the aver-

age functional connectivity value across all participants from all sites, and e � N ð0; g� 1Þ repre-

sents noise. For each functional connectivity value, we estimated the respective parameters

using regular ordinary least squares regression with L2 regularization, as the design matrix of

the regression model is rank-deficient (see S3 Text). We used the “quadprog” function in

MATLAB (R2016b) for estimation. When regularization was not applied, we observed spuri-

ous anticorrelation between the measurement bias and the sampling bias for HCs and spurious

correlation between the sampling bias for HCs and the sampling bias for patients with psychi-

atric disorders (S3A Fig, left). These spurious correlations were also observed in the permuta-

tion data in which there were no associations between the site label and data (S3A Fig, right).

This finding suggests that the spurious correlations were caused by the rank-deficient property

of the design matrix. We tuned the hyperparameter lambda to minimize the absolute mean of

these spurious correlations (S3C Fig, left).

Analysis of contribution size

To quantitatively verify the magnitude relationship among factors, we calculated and com-

pared the contribution size to determine the extent to which each bias type and factor explains

the variance of the data in our linear model (Fig 2C). After fitting the model, the b-th connec-

tivity from subject a can be written as follows:

Connectivitya;b ¼ xam
Tmb þ xashc

Tsbhc þ xasmdd

Tsbmdd þ xasscz
Tsbscz þ xad

Tdb
þ xap

Tpb þ const þ e:

For example, the contribution size of measurement bias (i.e., the first term) in this model

was calculated as

Contribution sizem

¼
1

Nm

1

Ns � N

XNs

a¼1

XN

b¼1

ðxam
TmbÞ

2

ðxamTmbÞ
2
þ ðxashc

TsbhcÞ
2
þ ðxasmdd

TsbmddÞ
2
þ ðxasscz

TsbsczÞ
2
þ ðxadTd

b
Þ

2
þ ðxapTpbÞ

2
þ e2

;
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in which Nm represents the number of components for each factor, N represents the number

of connectivities, Ns represents the number of subjects, and Contribution sizem represents the

magnitude of the contribution size of measurement bias. These formulas were used to assess

the contribution sizes of individual factors related to measurement bias (e.g., phase-encoding

direction, scanner, coil, and fMRI manufacturer: Fig 4B). We decomposed the measurement

bias into these factors, after which the relevant parameters were estimated. Other parameters

were fixed at the same values as previously estimated.

Spatial characteristics of measurement bias, sampling bias, and each factor

in the brain

To evaluate the spatial characteristics of each type of bias and each factor in the brain, we cal-

culated the magnitude of the effect on each ROI. First, we calculated the median absolute value

of the effect on each functional connection among sites or participants for each bias and par-

ticipant factor. We then calculated the absolute value of each connection for each disorder fac-

tor. The uppercase bold letters (e.g., M) and subscript vectors (e.g., mk) represent the vectors

for the number of functional connections:

M ¼ mediankðjmkjÞ; Shc ¼ mediankðjshckjÞ; Smdd ¼ mediankðjsmddkjÞ; Sscz ¼ mediankðjssczkjÞ;D2

¼ jd2j;D3 ¼ jd3j;P ¼ medianjðjpjjÞ:

We next calculated the magnitude of the effect on ROIs as the average connectivity value

between all ROIs, except for themselves.

Effect on ROIn ¼
1

NROI � 1

XNROI

v6¼n

Effect on connectivityn;v;

in which NROI represents the number of ROIs, Effect_on_ROIn represents the magnitude of the

effect on the n-th ROI, and Effect_on_connectivityn,v represents the magnitude of the effect on

connectivity between the n-th ROI and v-th ROI.

Hierarchical clustering analysis for measurement bias

We calculated the Pearson’s correlation coefficients between measurement biases mk (N × 1),

where N is the number of functional connections) for each site k, and performed a hierarchical

clustering analysis based on the correlation coefficients across measurement biases. To visual-

ize the dendrogram (Fig 4A), we used the “dendrogram,” “linkage,” and “optimalleaforder”

functions in MATLAB (R2016b).

Comparison of models for sampling bias

We investigated whether sampling bias is caused by the differences in the number of partici-

pants among imaging sites or by sampling from different populations among imaging sites.

We constructed two models and investigated which model provides the best explanation of

sampling bias. In the single-population model, we assumed that participants were sampled

from a single population across imaging sites. In the different-population model, we assumed

that participants were sampled from different populations among imaging sites. We first theo-

rized how the number of participants at each site affects the variance of sampling biases across

connectivity values as follows:

In the single-population model, we assumed that the functional connectivity values of each

participant were generated from an independent Gaussian distribution, with a mean of 0 and a

variance of ξ2 for each connectivity value. Then, the functional connectivity vector for
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participant j at site k can be described as

ckj � N ð0; x2IÞ:

Let ck be the vector of functional connectivity at site k averaged across participants. In this

model, ck represents the sampling bias and can be described as

ck ¼
1

Nk

XNk

j¼1

ckj � N 0;
x

2

Nk
I

� �

;

in whichNk represents the number of participants at site k. The variance across functional con-

nectivity values for ck is described as

Vk ¼
1

N

XN

i¼1

ðcki � �ckÞ
2
¼

1

N
ck

T I �
1

N
110

� �T

I �
1

N
110

� �

ck �
1

N
ck

Tck;

in which 1 represents the N × 1 vector of ones and I represents the N × N identity matrix.

Since N equals 35,778 and 1

35;778
is sufficiently smaller than 1, we can approximate

I �
1

N
110 � I:

Then, the expected value of variance across functional connectivity values for sampling bias

can be described as

E Vk½ � �
1

N
E ck

Tck½ � ¼
1

N
Tr

x
2

Nk
I

� �

¼
x

2

Nk
:

In the different-population model, we assumed that the functional connectivity values of

each participant were generated from a different independent Gaussian distribution, with an

average of βk and a variance of ξ2 depending on the population of each site. In this situation,

the functional connectivity vector for participant j at site k can be described as

ckj � N ðβk; x
2IÞ:

Here, we assume that the average of the population βk is sampled from an independent Gauss-

ian distribution with an average of 0 and a variance of σ2. That is, βk is expressed as

βk � N ð0; s2IÞ:

The vector of functional connectivity for site k averaged across participants can then be

described as

ck � N 0;
x

2

Nk
þ s2

� �

I
� �

:

The variance across functional connectivity values for ck can be described as

E Vk½ � �
x

2

Nk
þ s2:
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In summary, the variance of sampling bias across functional connectivity values in each

model is expressed by the number of participants at a given site as follows:

single� population model : yk ¼ � xk þ 2 log
10
x

different� population model : yk ¼ � log10
ðx

2
10� xk þ s2Þ;

in which yk = log10(vk), vk represents the variance across functional connectivity values for shck,
shck represents the sampling bias of HCs at site k (N × 1: N is the number of functional connec-

tivity), xk = log10(Nk), and Nk represents the number of participants at site k. We estimated the

parameters ξ and σ using the MATLAB optimization function “fminunc.” To simplify statisti-

cal analyses, sampling bias was estimated based on functional connectivity in which the aver-

age across all participants was set to zero.

We aimed to determine which model provided the best explanation of sampling bias in our

data by calculating the AICc (under the assumption of a Gaussian distribution) for small-sam-

ple data [36, 37], as well as BIC:

AICc ¼
X6

k¼1

lnφk
2 þ 2qþ

2qðqþ 1Þ

ð6 � q � 1Þ
;

BIC ¼
X6

k¼1

lnφk
2 þ q � logð6Þ;

in which φk ¼ vk � bvk ; bvk represents the estimated variance, and q represents the number of

parameters in each model (1 or 2).

To investigate prediction performance, we used leave-one-site-out cross-validation in

which we estimated the parameters ξ and σ using data from five sites. The variance of sampling

bias was predicted based on the number of participants at the remaining site. This procedure

was repeated to predict variance values for sampling bias at all six sites. We then calculated the

absolute errors between predicted and actual variances for all sites.

Harmonization procedures

We compared four different harmonization methods for the removal of site differences, as

described in the main text.

Traveling-subject harmonization. Measurement biases were estimated by fitting the

regression model to the combined SRPBS multidisorder and traveling-subject datasets in the

same way in the “Estimation of biases and factors” section. For each connectivity, the regres-

sion model can be written as follows:

Connectivity ¼ xm
Tmþ xshc

Tshc þ xsmdd

Tsmdd þ xsscz
Tsscz þ xd

Td þ xp
Tpþ const þ e: ð1Þ

Measurement biases were removed by subtracting the estimated measurement biases. Thus,

the harmonized functional connectivity values were set as follows:

ConnectivityTraveling� subject ¼ Connectivity � xm
T bm;

in which bm represents the estimated measurement bias.

GLM harmonization. The GLM harmonization method adjusts the functional connectiv-

ity value for site difference using GLM. Site differences were estimated by fitting the regression

model, which included site label only, to the SRPBS multidisorder dataset only. The regression
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model can be written as

Connectivity ¼ const þ xs
TsGLM þ e; ð2Þ

in which sGLM represents the site difference (9 sites × 1). For each functional connectivity

value, we estimated the parameters using regular ordinary least squares regression. Site differ-

ences were removed by subtracting the estimated site differences. Thus, the harmonized func-

tional connectivity values were set as follows:

ConnectivityGLM ¼ Connectivity � xs
TdsGLM ;

in which dsGLM represents the estimated site difference.

Adjusted GLM harmonization. Site differences were estimated by fitting the regression

model, which included site label and diagnosis label, to the SRPBS multidisorder dataset. The

regression model can be written as

Connectivity ¼ const þ xs
TsAdj þ xd

TdAdj
þ e; ð3Þ

In which sAdj represents the site difference (9 sites × 1). For each functional connectivity

value, we estimated the parameters via regular ordinary least squares regression. Site differ-

ences were removed by subtracting the estimated site difference only. Thus, the harmonized

functional connectivity values were set as follows:

ConnectivityAdj ¼ Connectivity � xs
TcsAdj ;

in which csAdj represents the estimated site difference.

ComBat harmonization. The ComBat harmonization model [16, 17, 19, 38] extends the

adjusted GLM harmonization method in two ways: (1) it models site-specific scaling factors,

and (2) it uses empirical Bayesian criteria to improve the estimation of site parameters for

small sample sizes. The model assumes that the expected connectivity value can be modeled as

a linear combination of the biological variables and the site differences in which the error term

is modulated by additional site-specific scaling factors.

Connectivity ¼ const þ xs
TsComBat þ xd

TdComBat
þ dke; ð4Þ

in which sComBat represents the site difference (9 sites × 1), and δk represents the scale parame-

ter for site differences at site k for the respective connectivity value. The harmonized functional

connectivity values were set as follows:

ConnectivityComBat ¼
Connectivity � const � xsT dsComBat � xdT

ddComBat

bdk

þ const þ xd
T ddComBat ;

in which bdk ;
ddComBat , and dsComBat are the empirical Bayes estimates of δk, dComBat, and sComBat,

respectively, using the “combat” function in https://github.com/Jfortin1/ComBatHarmonization.

Thus, ComBat simultaneously models and estimates biological and nonbiological terms and alge-

braically removes the estimated additive and multiplicative site differences. Of note, in the Com-

Bat model, we included diagnosis as covariates to preserve important biological trends in the data

and avoid overcorrection.

PCA

We developed bivariate scatterplots of the first two PCs based on a PCA of functional con-

nectivity values in the SRPBS multidisorder dataset (Fig 6A). All participant data in the
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SRPBS multidisorder dataset were plotted on two axes consisting of the first two PCs (Fig

6A, small, light-colored symbols). The first two PCs could explain approximately 6% of the

variance in the whole data (Fig 6B, 3.5% and 2.5% for the first and second PC, respectively).

Dark-colored markers indicated the averages of the projected data across HCs at each site

and the average within each psychiatric disorder in the subspace spanned by the two com-

ponents. To visualize whether most of the variation in the SRPBS multidisorder dataset was

still associated with imaging site after harmonization, we performed a PCA of functional

connectivity values in the harmonized SRPBS multidisorder dataset (Fig 6C). We used the

traveling-subject method for harmonization, as described in the following section. Finally,

to visualize the measurement bias in the SRPBS multidisorder dataset, we performed a PCA

of functional connectivity values in the SRPBS multidisorder data after subtracting only the

sampling bias (Fig 6D).

Twofold cross-validation evaluation procedure

We compared four different harmonization methods for the removal of site difference or mea-

surement bias by 2-fold cross-validation, as described in the main text. In the traveling-subject

harmonization method, we estimated the measurement bias by applying the regression model

written in Eq 1 in the “Harmonization procedures” section to the estimating dataset. Thus, the

harmonized functional connectivity values in testing dataset were set as follows:

connectivityTraveling� subjecttesting dataset ¼ Connectivitytesting dataset � xm
T bmestimating dataset;

in which bmestimating dataset represents the estimated measurement bias using the estimating

dataset.

By contrast, in the other harmonization methods, we estimated the site differences by

applying the regression models written in Eqs 2–4 in the “Harmonization procedures” section

to the estimating dataset (fold1 data). Thus, the harmonized functional connectivity values in

testing dataset were set as follows:

connectivityGLMtesting dataset ¼ Connectivitytesting dataset � xs
TdsGLM fold1;

connectivityAdjtesting dataset ¼ Connectivitytesting dataset � xs
TcsAdj fold1;

connectivityComBattesting dataset ¼ Connectivitytesting dataset � xs
T dsComBat fold1;

in which dsGLM fold1;
csAdj fold1; dsComBat fold1 represents the estimated site differences using fold1 data.

We then estimated the measurement bias, participant factor, and disorder factors by apply-

ing the regression model written in Eq 1 to the harmonized functional connectivity values in

the testing dataset. Finally, we evaluated the standard deviation of the magnitude distribution

of measurement bias calculated in the same way as described in the “Quantification of site dif-

ferences” section among the harmonization methods. This procedure was done again by

exchanging the estimating dataset and the testing dataset.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figure panels 2A and C, 3, 4B, 5C–E, 6A–D, and 7A–C and all supporting information

figures.

(XLSX)
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S2 Data. Limitation on availability of connectivity matrices and fMRI images obtained at

each site. fMRI, functional magnetic resonance imaging.

(XLSX)

S1 Text. Magnitude distribution of both biases and each factor on functional connectivity.

(DOCX)

S2 Text. Field map correction.

(DOCX)

S3 Text. Selection of the regularization hyperparameter lambda.

(DOCX)

S4 Text. Brain regions contributing the measurement bias of each site.

(DOCX)

S5 Text. Classifiers for MDD and SCZ, based on the four harmonization methods. MDD,

major depressive disorder; SCZ, schizophrenia.

(DOCX)

S6 Text. Regression models of participant age based on the four harmonization methods.

(DOCX)

S1 Fig. Distributions and statistics for each type of bias and each factor. (A, B) The distribu-

tion of the effects of each bias and each factor on functional connectivity vectors. Functional

connectivity was measured based on Fisher’s z-transformed Pearson’s correlation coefficients.

The x axis represents the effect size of the Fisher’s z-transformed Pearson’s correlation coeffi-

cients. In (A) and (B), the y axis represents the density of connectivity and the log-transformed

the number of connections, respectively. Each line represents one participant or one site. ASD,

autism spectrum disorder; HC, healthy controls; MDD, major depressive disorder; SCZ,

schizophrenia.

(TIF)

S2 Fig. Effects of field map correction. (A) Top: Mean effects of connectivity at all 268 ROIs

with field map correction. Color-coding follows that for Fig 4 in the main text. Difference

between field map–corrected and field map–uncorrected datasets for participant factor (mid-

dle) and measurement bias (bottom). Red represents positive effects due to correction (i.e.,

increase in participant factor and decrease in measurement bias). Blue represents negative

effects (i.e., decrease in participant factor and increase in measurement bias). (B) The standard

deviations of participant factor and measurement bias after field map correction. Bars represent

the average, whereas error bars represent the standard deviation across sites or participants.

Each data point represents one participant or one site. (C) Clustering dendrogram for measure-

ment bias after field map correction. The height of each linkage in the dendrogram represents

the distance between the clusters joined by that link. ATT, Siemens TimTrio scanner at

Advanced Telecommunications Research Institute International; ATV, Siemens Verio scanner

at Advanced Telecommunications Research Institute International; COI, Center of Innovation

in Hiroshima University; KPM, Kyoto Prefectural University of Medicine; KUS, Siemens Skyra

scanner at Kyoto University; KUT, Siemens TimTrio scanner at Kyoto University; ROI, region

of interest; SWA, Showa University; UTO, University of Tokyo; YC1, Yaesu Clinic 1.

(TIF)
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S3 Fig. Selection of the regularization hyperparameter lambda. (A) Correlation matrix

between measurement biases and sampling biases in HCs and matrices between sampling

biases of HCs and sampling biases of patients with psychiatric disorders at lambda = 0 and

lambda = 14, 12 (left: real data, right: permutation data). (B) Correlation values between the

two types of bias as functions of lambda from 0 to 20 (left: real data, right: permutation data).

Correlations were calculated between the measurement and sampling biases of HCs and

between the sampling biases of HCs and sampling biases of patients with psychiatric disorders.

(C) Absolute mean of three correlations as a function of lambda. (D) Percentage change in the

residual error between model and real data as a function of lambda. ATT, Siemens TimTrio

scanner at Advanced Telecommunications Research Institute International; ATV, Siemens

Verio scanner at Advanced Telecommunications Research Institute International; COI, Cen-

ter of Innovation in Hiroshima University; KUT, Siemens TimTrio scanner at Kyoto Univer-

sity; MDD, major depressive disorder; SCZ, schizophrenia; SWA, Showa University; UTO,

University of Tokyo1.

(TIF)

S4 Fig. Spatial distribution of the measurement bias of each site in various brain regions.

Mean effects of connectivity for all 268 ROIs. For each ROI, the mean effects of all functional

connections associated with that ROI were calculated for the measurement bias of each site.

Warmer (red) and cooler (blue) colors correspond to large and small effects, respectively. The

magnitudes of the effects are normalized within each site (z-score). ATT, Siemens TimTrio

scanner at Advanced Telecommunications Research Institute International; ATV, Siemens

Verio scanner at Advanced Telecommunications Research Institute International; COI, Cen-

ter of Innovation in Hiroshima University; HKH, Hiroshima Kajikawa Hospital; HUH: Hiro-

shima University Hospital; KPM, Kyoto Prefectural University of Medicine; KUS, Siemens

Skyra scanner at Kyoto University; KUT, Siemens TimTrio scanner at Kyoto University; ROI,

region of interest; SWA, Showa University; UTO, University of Tokyo; YC1, Yaesu Clinic 1;

YC2, Yaesu Clinic 2.

(TIF)

S5 Fig. Performance of disorder classifiers and age regression model in the training data-

set. (A, B) Performance of each classifier in the training dataset for each harmonization method

(blue for MDD, red for SCZ). Bars represent the average, whereas error bars represent the stan-

dard deviation across 100 resamplings. (C) Scatterplot of actual age and predicted age for each

harmonization method. The solid line represents the linear regression of the actual age from the

predicted age. The MAE and correlation coefficient (r) are also shown. Each data point represents

one participant. AUC, area under the curve; MAE, mean absolute error; MCC, Matthews correla-

tion coefficient; MDD, major depressive disorder; SCZ, schizophrenia.

(TIF)

S6 Fig. Classifier performances for MDD and SCZ for different harmonization methods.

(A) The probability distribution for the diagnosis of MDD in the training dataset (left) and

independent cohort (right) for each harmonization method. The MDD and HC distributions

are depicted in blue and gray, respectively. (B) The probability distribution for the diagnosis of

SCZ in the training dataset (left) and independent cohort (right) for each harmonization

method. The SCZ and HC distributions are depicted in red and gray, respectively. (C, D) Clas-

sifier performance in the independent cohort for each harmonization method and each classi-

fier (blue for MDD, red for SCZ). AUC, area under the curve; HC, healthy control; MCC,

Matthews correlation coefficient; MDD, major depressive disorder; SCZ, schizophrenia.

(TIF)
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S7 Fig. Performance of a regression model for the prediction of a participant’s age for dif-

ferent harmonization methods. Scatterplots of actual age and predicted age. The solid line

indicates the linear regression of the actual age from the predicted age. The MAE and correla-

tion coefficient (r) are shown in each panel. Each data point represents one participant. Each

panel shows the results for the (A) traveling-subject method, (B) ComBat method, (C) GLM

method, (D) adjusted GLM method, or (E) raw method (i.e., the data were not harmonized

across sites). GLM, general linear model; MAE, mean absolute error.

(TIF)

S1 Table. Imaging protocols for resting-state fMRI in the traveling-subject dataset. fMRI,

functional magnetic resonance imaging.

(XLSX)

S2 Table. Demographic characteristics of patients in the independent validation cohort

dataset for MDD prediction. MDD, major depressive disorder.

(XLSX)

S3 Table. Demographic characteristics of patients in the independent validation cohort

dataset for SCZ prediction. SCZ, schizophrenia.

(XLSX)

S4 Table. Demographic characteristics of patients in the independent validation cohort

dataset for age prediction.

(XLSX)

S5 Table. Imaging protocols for resting-state fMRI in the independent validation cohort

dataset. fMRI, functional magnetic resonance imaging.

(XLSX)

S6 Table. Comparison between the variances of distributions in measurement bias and dis-

order factor.

(XLSX)

S7 Table. Comparison between variances of the distributions in sampling bias for healthy

control and disorder factors.

(XLSX)

S8 Table. Results of MDD prediction. MDD, major depressive disorder.

(XLSX)

S9 Table. All results for MDD prediction at each site. MDD, major depressive disorder.

(XLSX)

S10 Table. Results of SCZ prediction. SCZ, schizophrenia.

(XLSX)

S11 Table. All results for SCZ prediction at each site. SCZ, schizophrenia.

(XLSX)
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