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SUMMARY

This paper proposes a movement trajectory planning
model, which is a maximum task achievement model in
which signal-dependent noise is added to the movement
command. In the proposed model, two optimization criteria
are combined, maximum task achievement and minimum
energy consumption. The proposed model has the feature
that the end-point boundary conditions for position, veloc-
ity, and acceleration need not be prespecified. Conse-
quently, the method can be applied not only to the simple
point-to-point movement, but to any task. In the method in
this paper, the hand trajectory is derived by a psychophysi-
cal experiment and a numerical experiment for the case in
which the target is not stationary, but is a moving region. It
is shown that the trajectory predicted from the minimum
jerk model or the minimum torque change model differs
considerably from the results of the psychophysical experi-
ment. But the trajectory predicted from the maximum task
achievement model shows good qualitative agreement with
the hand trajectory obtained from the psychophysical ex-
periment. © 2004 Wiley Periodicals, Inc. Syst Comp Jpn,
35(11): 48-58, 2004; Published online in Wiley Inter-
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1. Introduction

When a human moves his hand quickly from a point
to another point, the hand follows a trajectory which exhib-
its common and invariant characteristics in time and space
[1]. The movement is as follows. The hand (finger) follows
atrajectory which is almost straight but slightly curved. The
velocity in the tangential direction exhibits a bell-shaped
waveform in time. The acceleration exhibits a smooth
waveform. Various optimization models have been pro-
posed as movement trajectory generation models for this
human movement. Examples are the minimum jerk model
[2], the minimum torque change model [3], the minimum
motor command change model [4], and the minimum com-
manded torque change model [5].

Among these, the minimum jerk trajectory has the
feature that the analytical solution can be derived relatively
easily. But it is very difficult to derive strict solutions for
other models based on other dynamic optimal criteria. It is
required to solve a constrained nonlinear optimization
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problem in which the solution minimizing the evaluation
function is derived under a constraint (nonlinear dynamics)
and subject to boundary conditions (start and goal points).
It is generally very difficult to derive the solution.

When the hand is moved repeatedly, almost the same
trajectories are observed, but it is impossible to reproduce
exactly the same trajectory. Such a variation of movement
has been ignored in past movement control models as an
unnecessary disturbance. Is it meaningless, however, to
consider that the variation of movement has an essential
role in achieving the movement? Harris and Wolpert pro-
posed a new trajectory planning model in which the trajec-
tory is generated so that the variance of the hand position
in the period specified after the movement is minimized
when noise dependent on the magnitude of the movement
command is added to the movement command [6]. This
variance minimization model can effectively reproduce
saccadic eye movement and the reaching movement trajec-
tory of the human arm without using the minimum jerk
criterion or the dynamic optimization criterion. The model
can also account well for Fitt’s law (speed—accuracy trade-
off) as well as the 2/3-power law (relation between trajec-
tory curvature and hand velocity).

Past models have focused on generation of a trajec-
tory which maximizes the smoothness (weak constraint)
while strictly satisfying the boundary conditions (strong
constraint). In point-to-point movement, the purpose is to
generate a trajectory which gives strictly zero error for the
prespecified position, velocity, and acceleration of the hand
at the start and stop points of the movement, while maxi-
mizing smoothness, that is, minimizing jerks (changes of
acceleration) or minimizing movement command changes.
It is questionable, however, whether it makes sense to
satisfy strictly the boundary condition so long as there is
noise added to the movement command and the final posi-
tion fluctuates. The purpose is to achieve a satisfactory task,
and it is not always necessary for the boundary conditions
to be strictly satisfied.

The authors are trying to extend the minimum vari-
ance model in the presence of movement command-de-
pendent noise to the maximum task achievement model.
The model can handle in a unified way trajectory generation
under various task conditions, such as catching, tracking
control, and impedance control. The criterion is to maxi-
mize task achievement, and it is not necessary for the
boundary condition to be satisfied strictly or for the vari-
ance to be minimized. In this study, the maximum task
achievement model is proposed, and the results of numeri-
cal and psychophysical experiments are compared. It is
shown that the results of the numerical and psychophysical
experiments agree well qualitatively when an optimization
criterion combining maximum task achievement and mini-
mum energy consumption (squared sum of joint torque in
this study) is applied.

2. Optimization Model for Trajectory
Planning

Representative past models of trajectory planning
and the model proposed in this paper are briefly described
below. Table 1 summarizes the major features of the mod-
els.

2.1. Past optimal trajectory generation models

2.1.1. Minimum jerk model

In the minimum jerk model, the trajectory is planned
so that the end-point boundary conditions are strictly satis-
fied (in the point-to-point movement, zero error is realized
for prespecified position, velocity, and acceleration of the
hand at the start and stop points of movement), and the
smoothness (jerk index) of the hand trajectory is minimized
over the movement period #:
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== - —= dt 1
“ 2/0 (dt3) +(dt3 M

The jerk index is represented by the third-order time deriva-
tive of the hand position (x, y) in an orthogonal coordinate
system. The parameters are defined in kinematic space, and

Table 1. Difference between models

Signal- End-point Optimization
Model dependent boundary .
. . criterion
noise condition

Minimum  not strong smoothness

jerk considered  constraint (minimum
jerk)

Minimum  not strong smoothness

motor com- considered  constraint (minimum

mand change motor
command
change)

Minimum considered  strong minimum

variance constraint end-point
position
variance

Maximum  considered  no constraint maximum

task achieve- task

ment achievement
and
minimum
energy
consumption




the arm dynamics and movement time are not related to
trajectory planning. Straight-line movement is predicted in
the hand orthogonal coordinate system, and the tangential
velocity along the trajectory has a bell-shaped waveform in
time. It is easy to solve Eq. (1) analytically so that a
fifth-order polynomial in the time ¢ is obtained for the
trajectory prediction.

2.1.2. Minimum torque change model

In the minimum torque change model, the end-point
boundary conditions are strictly satisfied and the trajectory
is planned so that the time change of the torque generated
at each joint is minimized over the movement time #:

1 tfn dTiz 2
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where T, is the torque generated at the i-th joint.

In this model, in addition to the external coordinates
of the start and the end points, dynamical quantities such as
the arm length and the moment of inertia are related to
trajectory planning, and the trajectory changes depending
on the arm posture and the positions of the start and end
points. The constrained nonlinear optimization problem
must be solved, and it is not easy to derive a solution, but
the solution once obtained well reproduces a gradually
curved hand trajectory.

2.1.3. Minimum variance model

In the minimum variance model, it is assumed that
the trajectory is planned so that the variance of the finger
position in a specified time after the movement (the post-
movement time from #; to £,) is minimized when the move-
ment is repeated a certain number of times in the presence
of noise dependent on the magnitude of the movement
command):

cv=Z/e{(f—w)2+(.@—y)2}dt 3)

=1

where x and y are the mean finger position coordinates at
the end of movement. There is no criterion for determining
the postmovement time [6].

This model does not explicitly specify the criterion
for smoothness, and a smooth trajectory is realized by
minimizing the variance in the presence of noise dependent
on the magnitude of the movement command. Only a
kinematic variable—the variance of the end position—is
explicitly used, but the dynamics has an effect on the
trajectory planning. In the minimum variance model of
Harris and Wolpert, the trajectory is approximated by a
spline curve and the end-point node is fixed at the stop
position.
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2.2. Maximum task achievement model

In the trajectory generation model proposed in this
paper, the trajectory is planned so that task achievement is
maximized and energy consumption is minimized in the
presence of the noise depending on the magnitude of the
movement command. The end-point boundary condition is
not specified beforehand. The situation is the same as in the
minimum variance model in which noise dependent on the
magnitude of the movement command plays the essential
role, resulting in implicit consideration of the smoothness
as a criterion.

In past trajectory planning models, the boundary
conditions (position, velocity, and acceleration at the start
and the end points) must be prespecified. But the trajectory
is planned in the proposed model so that task achievement
is maximized. In other words, the task is specified and the
optimization problem is solved. Thus, as a result, the posi-
tion, velocity, and acceleration at the end points of the
trajectory are determined. It is not necessary, as in past
models, for the end-point boundary condition to be prespe-
cified. Consequently, the method can easily be applied to
any task.

3. Psychophysical Experiment

In most past studies, only stationary targets have been
used in which the end-point boundary conditions for the
velocity and the acceleration are zero. In contrast, the target
is not a point in this experiment: it is a region which moves
with constant acceleration.

3.1. Experimental setup and procedure

The subjects were six males and two females, all
right-handed, aged 22 to 46 years. They used the right hand
in all trials. Figure 1 outlines the experimental setup. The
subject sits in an otolaryngology chair with the shoulders
fixed to the back of the chair by a belt. The arm is placed
on a working table, and the height of the table is aligned to
the height of the shoulder. The table surface is covered by
a frictionless Teflon sheet.

An infrared LED marker is set on the finger, and its
position is measured with a sampling frequency of 200 Hz,
using a three-dimensional position measuring device (OP-
TOTRAK3020). The measured position of the finger is
displayed on a CRT monitor as a cursor. The background
of the CRT monitor screen is white. The subject watches
the CRT monitor screen and performs the task. The meas-
ured position data are smoothed by a sixth-order Butter-
worth filter with a cutoff frequency of 5 Hz.
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Fig. 1. Experimental setup.

3.2. Definition of task

The following task is used in the experiment.

(1) (Fig. 2a) The subject aligns the cursor repre-
senting the finger position to the inside of a circle with a
diameter of 3 cm, indicating the position of the start point.
The start point is at the position (—0.25, 0.35) [m], with the
origin at the right shoulder of the subject.

(2) (Fig. 2b) When the instruction is given by the
examiner, the subject moves his finger to the right. When
the cursor X leaves the start circle, the circle disappears.

(3) (Fig. 2¢) At a certain time after the cursor leaves
the start circle (ballistic movement time, ; = 0.5 s), the
target (a circle of diameter Dt = 0.05 m) appears 0.3 m to
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Fig. 2. A schematic diagram of the task. (a) Initial state;
(b) immediately after the start of the movement; (c) after
ballistic movement time (time #;).

the right of the start point. The target moves with an initial
velocity (vy, Vyo) = (0, 0.8), and a constant acceleration
(ay, ay) =(0,-3.2). After a certain time (tracking movement
time, ¢, = 1 s), the target returns to the first position (0.3 m
to the right of the start), and then disappears.

(4) The subject is not instructed particularly regard-
ing the shape of the trajectory, etc., but is instructed to set
the cursor within the target circle so long as the target is
displayed (from time # to t.). Utilizing the change of color
of the cursor and the target and a beep tone, the subject is
informed when the cursor stays within the circle. If the
subject succeeded in keeping the cursor within the target
circle, the trial is judged a success. Before acquiring the
trajectory data, the subject practices the procedure 100 to
200 times in order to master the performance of the task.
After starting the measurement of the trajectory data, the
task is terminated when the number of successful trials
reaches the specified value.

4. Numerical Experiment

4.1. Optimization

In this experiment, the hand trajectory is generated
by a fifth-order spline function with nodes set at constant
time intervals. The nodes are initialized so that the gener-
ated trajectory is the minimum jerk trajectory. The nodes
are updated as follows by the simplex method.

(1) The trajectory of the finger position (x, y) is
generated by a fifth-order spline function.

(2) By the inverse kinematics of the arm, the trajec-
tory of the finger position (x, y) is converted to the trajectory
of the joint angle (6, 6,). Then, the result is converted by
the inverse dynamics function to the trajectory of the move-
ment command (u;, u,).

(3) It is assumed that noise dependent on the magni-
tude of the movement command is added to the movement
command, and the trajectories of the mean x,,, and the
standard deviation x4 of the finger position are estimated
by using an unscented filter [8].

(4) The evaluation function Ct for optimization is
calculated.

(5) The nodes are updated so that the evaluation
function Cr for optimization is decreased.

4.2. Evaluation function for optimization

In this experiment, the evaluation function Ct for
optimization is defined as follows.

(1) The mean X0 = (Xmeans Ymean) and the standard
deviation xg = (x, ¥sq) of the finger position are estimated
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Fig. 3. A measure of task achievement.

at each sampling time by the unscented filter. Using the
result, the probability p(x, ) that the finger is at the position
x = (x, y) is approximated by a normal distribution.

(2) The probability g(7) that the finger is in the target
region G (shaded region in Fig. 3) is calculated each time:

o(t) = / plx, t)da @
reag

(3) The minimum value of g(¢) in the tracking move-
ment time (from #; to ¢,) is defined as the task achievement
TA:

Ta = min{g(t)} (tr <t < te) ®)

(4) The weighted sum of the task achievement 7', and
the supplementary term Cy,, is defined as the evaluation
function, which is then minimized as the optimization:

CT == (1 - TA) + aCsup (6)

As the supplementary term Cg,, in this experiment,
we use the temporal mean of the square-sum torque in the
ballistic movement time and the tracking movement time
combined (1 s in all):

Sy m(t) 2t

1=1
C’sup = ¢
e

)

5. Comparison of Psychological
Experiment and Prediction by Numerical
Experiment

Figures 4 and 5 show the trajectories obtained in the
psychophysical experiment. In Fig. 4, all measurements for
eight subjects are stacked. 1185 trajectories were measured:
169 (40), 186 (38), 153 (40), 200 (15), 115 (39), 106 (47),
126 (47) and 130 (44). The numbers in parentheses are the
number of trials judged to be successful. In this study, all
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Fig. 4. Hand trajectories of all subjects.

trajectories were used in the analysis, regardless of whether
the trial was a success or a failure. The white solid line is
the mean of the hand trajectories, the dashed line is the
trajectory of the mean standard deviation, and the dotted
line is the trajectory of the target region.

Figure 5 shows the mean hand trajectory of subject
AS. Figures 6 and 7 show the trajectories after optimization
computation by the maximum task achievement trajectory
generation model proposed in this paper. In Figs. 4 to 7, the
upper left is the trajectory on the x—y plane, the upper right
is the time waveform of the tangential velocity of the finger,
the lower left is the time waveform of the x component of
the finger position, and the lower right is the time waveform
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Fig.5. Mean trajectory of hand trajectory of subject AS.
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Fig. 6. Hand trajectory predicted by the max task
achievement criterion.

of the y component of the finger position. The solid line is
the trajectory of the mean, the dashed line is the trajectory
of the mean =+ standard deviation, and the dotted line is the
trajectory of the target region. X indicates the nodes of the
spline function.

Figure 8 shows the hand trajectory obtained from the
psychophysical experiment and the trajectory predicted by
various models within the ballistic movement time, that is,
from time O to #. The eight dotted lines are the mean
trajectories of the eight subjects. TOPS (alpha=0), TOPS
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Fig. 7. Hand trajectory prediction by the max task
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sum criterion.
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Fig. 8. Hand trajectories of eight subjects and each
model. Eight dotted lines show mean
trajectories of the eight subjects.

(alpha=0.1), MCTC, MJ and MTC are the predicted trajec-
tories based on the optimization criteria of maximum task
achievement only, maximum task achievement plus mini-
mum energy consumption, minimum commanded torque
change, minimum jerk, and minimum torque change, re-
spectively.

We see from Fig. 5 that the position, velocity, and
acceleration of the finger of the subject at time #=0.5 s
differ considerably from the values at the center of the
target. In other words, it is estimated that the subject does
not consider the movement of the center of the target at time
t;=0.5 s as the end-point boundary condition. In the case
of the conventional minimum commanded torque change,
minimum jerk, and minimum torque change models, how-
ever, the end-point boundary conditions must be precisely
specified. For the conventional model considered in this
paper, the movement of the target center at time #;=0.5 s
[the initial velocity (vy, vy0) = (0, 0.8) and constant accel-
eration (ay, ay) = (0, -3.2)] is used as the end-point bound-
ary condition, and the optimal trajectory is determined.

Figure 9 shows the total deviation [7] of the hand
trajectory estimated by each model from the hand trajectory
obtained from the psychophysical experiment. The vertical
axis is the frequency and the horizontal axis is the total
deviation. Deviation in the positive y direction is defined as
positive, and deviation in the negative y direction is defined
as negative. The area between the straight line connecting
the start point and the point at time #; and the trajectory from
time O to #;is defined as the total deviation. For the trajectory
measured for the subject, the point at which the curvature
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model.

of the trajectory is the maximum near time #; on the x—y
plane is used instead of the point at time z;.

As shown in Figs. 8 and 9, the trajectories predicted
by the conventional models—the minimum commanded
torque change, the minimum jerk, and the minimum torque
change—are markedly curved in the negative y direction.
As is evident from Fig. 9, the total deviation of the hand
trajectory obtained from the psychophysical experiment is
mostly distributed in the range of small positive values.
Thus, in contrast to the predictions of the conventional
models, the trajectory obtained by the psychophysical ex-
periment is slightly curved in the positive y direction.

Figure 6 is the trajectory predicted by the optimiza-
tion criterion based only on maximum task achievement
[oo =0 in Eq. (6)]. In contrast to the trajectory predicted by
a conventional model such as the minimum jerk model, the
trajectory is curved in the positive y direction. This trajec-
tory is closer to the trajectory obtained by the psychophysi-
cal experiment. When only maximum task achievement is
used as the optimization criterion, however, the trajectory
is excessively curved in the positive y direction compared
to the hand trajectory obtained from the psychophysical
experiment.

Figure 7 is the trajectory predicted by the optimiza-
tion criterion combining maximum task achievement and
minimum energy consumption [¢. = 0.1 in Eq. (6)]. We see
from Figs. 4, 8, and 9 that the trajectory predicted by the
optimization criterion combining maximum task achieve-
ment and minimum energy consumption shows good quali-
tative agreement with the trajectory obtained from the
psychophysical experiment. We see that by varying o in Eq.
(6) from O to 0.1, the model can account for the charac-
teristics of the hand trajectories of almost all trials of the
subjects.
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6. Conclusions

This paper has proposed the maximum task achieve-
ment model, a new model that can handle trajectory gen-
eration in a unified way under a wide range of task
conditions. It has also been shown that the hand movement
trajectory which is predicted by the optimization criterion
combining maximum task achievement and minimum en-
ergy consumption agrees well with the movement trajec-
tory data obtained from the psychophysical experiment.

Recently, Nakano and colleagues (personal commu-
nication) examined the relation between stiffness and per-
formance in single-joint reaching movement, and found the
following tendency. When the simultaneous activity of the
arm muscle is increased, the noise generated in the muscle
increases, but the variation of the final position is decreased
with increasing stiffness and noise. Todorov found that
when the task requires that the trajectory pass through an
intermediate point of a certain size, the generated trajectory
varies depending on the size of the intermediate region to
be passed through [9]. This suggests that humans do not
always use the criterion that the variation of the final
position is minimized (minimum variance).

There exists a supplementary term Cg,, to be com-
bined with the maximum task achievement term in the
optimization criterion [Eq. (6)]. Muscle fatigue [10], reduc-
tion of energy consumption [11], the commanded torque
change [5], and the smoothness of the movement command
[4] may be used for this term. In this paper, the temporal
mean of the square-sum torque over the ballistic movement
time is used as the supplementary term C,p,.

As shown in Fig. 8, the trajectory is curved differently
depending on the subject. By adjusting the weight [o in Eq.
(6)] in the optimization criterion combining maximum task
achievement and minimum energy consumption, the
curved shape of the trajectory depending on the subject can
be predicted. When a larger weight is assigned to task
achievement, the trajectory is more curved. When a larger
weight is assigned to energy consumption minimization,
the trajectory becomes straighter. It is suggested that hu-
mans adjust the weight of the supplementary term accord-
ing to the complexity of the task and the difficulty of its
accomplishment.

The rough shape of the trajectory obtained by the
numerical experiment in this paper is quite close to the
actual data for the subjects, but the velocity waveform
differs considerably. Various factors can be considered as
responsible for this deviation, such as incompleteness of the
maximum task achievement model or the numerical model,
or other factors. In order to compare the theoretical predic-
tion and the experimental data more quantitatively, the
numerical model should be further refined and behavioral
and numerical experiments should be continued.
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APPENDIX

1. Numerical Model for Arm

The equation of motion for the planar two-link two-
joint arm used in the numerical experiment (Fig. A.1) is as
follows:

71 = (I + I + 2M3L, S5 cos 02 + M2 L7)6,
+ (12 + MyL1 S5 cos 92)52
— M3L1S2(2601 + 62)02 + b1161 + b126
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Fig. A.1. Arm configuration.

To = ([2 + MoL1S5 cos 02)&1 + Igéz
+ MsL1 Sz sin 0267 + bo16; + ba262

Here, T, 0; and t,, 6, are the torque commands and the
joint angles of the shoulder and the elbow joints, respec-
tively. I;, M;, L; and S; are the moments of inertia with the
joint as the axis, the mass and length of the joint, and its
distance to the center of gravity of link i (i = 1, 2), respec-
tively. Link 1 is the upper arm and link 2 is the forearm. B;;
represents the viscosity, which expresses the effect of the
joint angular velocity of link j(j=1,2)onlinki (i = 1, 2).

It is assumed that r; and r, follow the following
second-order differential equation of the second-order mus-
cle model:

u; = (tl * t2) T + (tl + t2)7;2' + 7i

Here, u; and T, represent the movement command and the
torque command of joint i (i = 1, 2). t; = 0.04 and 7, = 0.03
are the time constants of the muscle.

2. Unscented Filter

In the estimation of the mean and the variance of a
system, the usual approach is to apply the Monte Carlo
method. In this study, however, the unscented filter [8] is
used to estimate the state (mean and variance) of the planar
two-joint arm (Appendix 1), which is a nonlinear dynami-
cal system. The unscented filter is a new method of estimat-
ing the state of a nonlinear dynamical system. It is easier to
apply than the extended Kalman filter, and estimation with
higher accuracy can be achieved.

The idea is to estimate the mean and variance from a
small number of sigma points, under the assumption of a
Gaussian distribution propagating in the nonlinear system
dynamics. In the Monte Carlo method, in which a large
number of sample points are selected at random to estimate
the mean and variance, a very large sample is required in
order to achieve highly accurate estimation. Fluctuations
are produced in the Monte Carlo method due to the use of
a random variable each time the mean and variance of the



trajectory are derived, even if the same target trajectory is
used. This makes it difficult to achieve stable convergence
of learning. In parameter updating in the Monte Carlo
method, small ups and downs occur in the learning gradient,
making it difficult for the procedure to converge to the
correct solution.

In contrast to the Monte Carlo method, the unscented
filter is a deterministic sample extraction procedure without
using a random variable. Thus, the learning gradient is
smoothed and stable convergence is realized. The un-
scented filter has the advantages over the Monte Carlo
method that the procedure is simple, the accuracy of esti-
mation is high, the computation cost is extremely low, and
learning converges stably, since it is a deterministic sample
extraction procedure without using a random variable.

Figure A.2 shows examples of the mean and variance
estimated by the Monte Carlo method and the unscented
filter. The horizontal and vertical axes are the x and y
coordinates of the finger position, respectively, when the
finger is moved by 0.3 m in the x direction in 0.5 s. The
ellipse in the dashed line shows the variance for 1000
sample points (X) in the Monte Carlo method. The ellipse
in the solid line shows the variance for 13 sigma points (O)
in the unscented filter. We see that the unscented filter can
estimate the mean and variance with high accuracy with a
much smaller number of samples than the Monte Carlo
method. The unscented filter is briefly described below.

2.1. The filtering problem

The filtering problem considered in this section is as
follows. Consider the discrete-time nonlinear equation
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Fig. A.2. Comparison with Monte Carlo method and

unscented filter method.
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x(k+1) = f(x(k), u(k), v(k), k),
z(k) = h(z(k), u(k), k)

The problem is to derive the optimal linear estimates for the
state vector x(k) and the observation vector z(k) with the
transition following the above equation.

Here, f( ) is the process model, x(k) is the state
variable at discrete time k, u(k) is the input vector, v(k) is
the process noise, z(k) is the observation vector, k() is the
observation model, and v(k) is white noise satisfying
E[v(k)]=0, EvGpwT(j)] = 8;Q(i). In this paper, it is as-
sumed that the process model is the forward dynamics of
the musculoskeletal system, the observation model is the
forward kinematics, the process noise is noise dependent
on the movement command, and the observation noise is 0.

2.2. Unscented transform

Suppose that x has mean x and variance P,,, and that
¥y =f(x) is a nonlinear function. The problem is to calculate
the mean y and variance P, of y. The unscented transform
procedure to be used in the unscented filter is described
briefly below. Let the mean and variance of the n-dimen-
sional variable x be x and P,,, respectively. Then, 2n + 1
sigma points ; are selected so that the sample mean and
sample variance agree with x and P,,, respectively.

The nonlinear transformation ); = f (&) is applied to
each sample point. The mean y and variance P,, after
transformation are obtained as follows, as the weighted sum
and the weighted outer product of the sample points:

The 2n + 1 sigma points are as follows:

Xy =
Xi

8l

z+ ( (n +n)PM)_

k3

Xign =7 — ( (n+ K,)PMC) (A1)

i

where K € R and (N(n + ¥)P,,); represent the i-th row or
column of the matrix square root of (n + K)P,,.
The weights are given by

Wo=k/(n+K)
W;=1/(n+ k)



Wi+n = 1/(n + f‘é) (AZ)
We set n + K =3 in this paper.

2.3. Algorithm of unscented filter

The following procedure is repeated for each time
step.

(1) The state vector is rewritten as an n = n + g-di-
mensional vector, including the process noise term:

x(k
v (k)
The process model is rewritten as follows, as a function of

xi

x(k+1) = f(x7, u(k), k)

The mean and variance of x“(k) are

a‘:(klk))

Ogr (A3)

& (k|k) = (

P“(k|k):(P(§|k) Q?k) ) (A4)

(2) n“ + 1 sigma points are generated from Eqs. (A.1)
to (A.4) and are transformed by the process model:

Xi(k + 1k) = f(X7 (klk), u(k), k)

(3) The mean and variance of the state vector are
estimated:

2n%
Bk + k) =Y Wi (k+1]k),
i=0
P(k+1]k)
=) Wil Xk +1]k) — &(k + 1]k)}
1=0

AX(k+1|k) — 2(k + 1|k)}".

(4) All sigma points are transformed by the observa-
tion model.

Zi(k + 1|k) = h(Xi(k + 1]k), u(k), k)

(5) The mean and variance of the observation vector
are estimated.

2n®

2k +1lk) = WiZi(k+1lk)
1=1

P,.(k+ 1|k)

2n?

- Z Wi{Z:(klk — 1) — 2(k + 1|k)}

=0

{Zi(klk=1) — 2(k + 1|k)}T
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