
Reinforcement learning with via-point representation

Hiroyuki Miyamotoa,b,*, Jun Morimotoc, Kenji Doyac, Mitsuo Kawatoc

aKawato Dynamic Brain Project, Japan Science and Technology Corporation, Kyoto, Japan
bGraduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Wakamatsu-ku,

Kitakyushu-shi, Fukuoka 808-0196, Japan
cATR Computational Neuroscience Laboratories, Kyoto, Japan

Received 25 March 2002; accepted 7 November 2003

Abstract

In this paper, we propose a new learning framework for motor control. This framework consists of two components: reinforcement

learning and via-point representation. In the field of motor control, conventional reinforcement learning has been used to acquire control

sequences such as cart-pole or stand-up robot control. Recently, researchers have become interested in hierarchical architecture, such as

multiple levels, and multiple temporal and spatial scales. Our new framework contains two levels of hierarchical architecture. The higher

level is implemented using via-point representation, which corresponds to macro-actions or multiple time scales. The lower level is

implemented using a trajectory generator that produces primitive actions. Our framework can modify the ongoing movement by means of

temporally localized via-points and trajectory generation. Successful results are obtained in computer simulation of the cart-pole swing

up task.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In our daily lives, it seems that we usually make good

choices unconsciously when determining an action to take

from among several choices under various environmental

conditions. We must make such choices on both large and

small scales. For example, we must select a route to a

restaurant from a variety of routes. After being seated, we

have more details to decide. Consider a person reaching for

a menu on the table. The goal of the movement is to move

the arm toward the menu to grab it. We must select one

desirable trajectory out of an infinite number of possible

trajectories. Animals and humans are able to empirically

learn how to select good actions from past experiences. We

can also learn from demonstrations performed by other

people (Atkeson & Schaal, 1997a,b; Miyamoto & Kawato,

1998; Miyamoto et al., 1996; Schaal, 1999), which is called

‘learning by watching’ or ‘teaching by showing.’ However,

it is still difficult to start from scratch in a conventional

learning machine. A reinforcement learning framework is

fascinating and can obtain such autonomous behavior

(Sutton & Barto, 1998 for a detailed and comprehensive

description).

A conventional reinforcement learning framework is

very powerful for small-scale problems such as a simple

maze on a computer screen, but it cannot be easily applied to

large-scale problems (e.g. driving a car in a real environ-

ment). For application to realistic and large-scale problems,

the recent trend of research in reinforcement learning is to

use modularization and hierarchical architecture. Several

methods for constructing such higher levels have been

studied, such as macro-actions, sub-goals, and multiple time

scales (McGovern, Precup, Ravindran, Singh, & Sutton,

1998; McGovern & Sutton, 1998).

Since the feedback gain of biological systems is low and

delay is large, high-speed movement must be controlled

with feed-forward control. Recent results of a psychological

experiment indicated that the sensory-motor system mod-

ifies the ongoing movement with a continually updated

internal estimate of the environment (Todorov, 1998). In

this paper, we propose a reinforcement learning framework
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for motor control. With via-point representation, this

framework acquires feed-forward control, on-line planning,

and environmental adaptation abilities like those of

biological systems. This framework contains two levels of

hierarchical architecture. The higher level, which is

implemented using via-point representation, corresponds

to macro-actions or multiple time scales. The lower level,

which is implemented using a trajectory generator,

corresponds to primitive actions. In Section 2, we present

our new method in detail. In Section 3, we describe

computer simulation that uses our method.

2. Reinforcement learning framework with via-point

representation

In this section, we begin with a brief review of the

conventional temporal difference (TD) algorithm of

reinforcement learning, before giving a detailed description

of TD-learning with via-point representation.

2.1. Reinforcement learning

In the reinforcement learning algorithm, a reinforcement

signal (reward or punishment) is used instead of the desired

output. Let rðt þ 1Þ ¼ rðsðtÞ; uðtÞÞ denote the immediate

reward for the state sðtÞ [ Rn and the action uðtÞ [ Rm at

time t: The objective of the reinforcement learning is to

maximize the long-term total discounted reward, the so-

called value function:

VðsðtÞÞ ¼ rðt þ 1Þ þ grðt þ 2Þ þ g2rðt þ 3Þ þ · · ·; ð1Þ

where 0 # g # 1 is a discount factor. The value function

estimates the value (goodness) of a given state s when the

system follows a policy p : s ! uðsÞ: The learning system

tries to find a better policy by using the value function.

Here, let PðsðtÞÞ denote the value function estimated by a

function approximator. After each transition from state sðtÞ

to state sðt þ 1Þ; under action uðtÞ and with reward rðt þ 1Þ;

the estimated value function should satisfy1

PðtÞ ¼ rðt þ 1Þ þ grðt þ 2Þ þ g2rðt þ 3Þ þ · · ·

¼ rðt þ 1Þ þ g{rðt þ 2Þ þ grðt þ 3Þ þ · · ·}

¼ rðt þ 1Þ þ gPðt þ 1Þ: ð2Þ

Then, the TD error calculated on each time step is

r̂ðtÞ ¼ rðtÞ þ gPðtÞ2 Pðt 2 1Þ: ð3Þ

In the actor–critic architecture shown in Fig. 1a, the critic

estimates PðtÞ and modifies it so that r̂ðtÞ! 0: The actor

takes stochastic actions, and when a large r̂ðtÞ is observed, it

increases the probability of taking the same action under

the same state. A variety of control tasks such as cart-pole

control and the stand-up task have been studied using

conventional actor–critic architecture (Barto, Sutton,

& Anderson, 1983; Doya, 1996, 1997, 2000; Morimoto &

Doya, 1998).

Fig. 1b shows our new actor–critic type reinforcement

learning architecture with via-point representation. This

architecture has two levels of hierarchy. The higher level is

implemented using via-point representation, which works as

macro-actions at multiple time scales. The lower level is

implemented using a trajectory generator that generates

primitive actions.

2.2. Incremental generation of via-points and trajectory

Fig. 2 illustrates how our model generates movement

trajectory using via-point representation. In this method,

via-points and the trajectory are generated on-line. In Fig. 2,

the circles ðWÞ denote the positions of via-points and the xs

ð£Þ denote the positions of tentative via-points. We used a

minimum jerk trajectory (detailed description is in Appen-

dix A) as the target trajectory.

In order to uniquely determine a minimum jerk trajectory

from the current via-point xn at time tn and the next via-

point xnþ1 at time tnþ1; we have to specify the velocity and

acceleration at time tnþ1: In our previous study of minimum

jerk trajectory generation (Miyamoto et al., 1996), the

velocity and acceleration of the via-point (end point) were

set to 0. However, if the velocity and acceleration are set to

0 at the via-point at tnþ1; the movement will be awkward. To

smoothly connect these via-points, we prepare a supplemen-

tary via-point x0nþ2 at t0nþ2 in addition to the next via-point

Fig. 1. (a) Actor–critic type reinforcement learning. Actor generates

primitive action directly at fine time grain (every time bin). (b) Actor–critic

type reinforcement learning with via-points. In the higher level of

hierarchy, actor generates via-points at coarse time grain. In the lower

level, trajectory generator transforms via-points to primitive action.

1 Eq. (2) is not always satisfied due to its stochastic nature, and what the

TD-learning does is to make the equation hold in a probabilistic manner.
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xnþ1 at tnþ1: The velocity and acceleration are unspecified at

xnþ1 and set to 0 at the tentative via-point x 0
nþ2: Then an

optimal trajectory (xn ! xnþ1 ! x 0
nþ2) is uniquely deter-

mined. The first half of the trajectory (xn ! xnþ1) is used for

control. When the trajectory is followed until time tnþ1 (Fig.

2b), the remaining trajectory ðxnþ1 ! x 0
nþ2Þ is discarded and

new via-points xnþ2; x
0
nþ3 are generated. The trajectory

goes over the via-points just like stepping from stone to

stone. In this way, the entire movement is executed with the

iterative generation of the via-points and trajectories.

2.3. TD learning with via-points

Fig. 3 shows a block diagram of TD-learning with via-

point representation. Let tn denote the time at the nth via-

point. At time tn; the system receives the state vector sðtnÞ

and immediate reward rðtnÞ: Then, the actors output the

locations and the timing of the next (ðn þ 1Þth) and tentative

(ðn þ 2Þth) via-points xnþ1; tnþ1; x
0
nþ2; t 0nþ2: By using these

via-points, as described in Section 2.2, the local trajectory

planner–controller generates a smooth trajectory that is fed

to the plant.

2.3.1. Generating via-points

At time tn; the locations and timing of the next and

tentative via-points are specified as follows,

xnþ1 ¼ xn þ tv1nv1; ð4Þ

tnþ1 ¼ tn þ tv1; ð5Þ

x0nþ2 ¼ xnþ1 þ tv2nv2; ð6Þ

t0nþ2 ¼ tnþ1 þ tv2; ð7Þ

where nv1 and nv2 are the vectors denoting the rate of

change in the via-point position during a unit time. tv1 and

tv2 are scalar and denote the time intervals between via-

points. These values are calculated by the actor using

function approximators as

nv1 ¼ z1ðsðtnÞÞ þ n1ðtnÞ; ð8Þ

tv1 ¼ z2ðsðtnÞÞ þ n2ðtnÞ; ð9Þ

nv2 ¼ z3ðsðtnÞÞ; ð10Þ

tv2 ¼ z4ðsðtnÞÞ; ð11Þ

where n1ðtnÞ and n2ðtnÞ are perturbations for exploration. zi

is the output of the function approximator of the ith actor.

2.3.2. Learning of critic and actors

In this section, we first describe the ordinary implemen-

tation of actor and critic with via-point representation. The

critic is estimated on each time step as described in Section

2.1. In the case of the actors, The TD error is calculated

between time tn21 and tn at two successive via-points as

follows.

r̂ðtnÞ ¼
Xk

j¼0

gjrðt þ jÞ þ gkPðsðt þ kÞÞ2 Pðsðtn21ÞÞÞ; ð12Þ

where k ¼ tn 2 tn21: In this ordinary implementation, we

have to observe reward and estimate critic at each time step.

In this paper, we adopted the following method. This

method is very simple and needs less computational cost.

The system observes reward and estimates critic at time tn:

Let VðsðtnÞÞ denote the value function under the state sðtnÞ

and the reward rðtnþ1Þ ¼ rðsðtnÞÞ:

VðsðtnÞÞ ¼ rðtnþ1Þ þ gvrðtnþ2Þ þ g2
vrðtnþ3Þ þ · · ·; ð13Þ

where 0 # gv # 1 is a discount factor. Here, let PðsðtnÞÞ

denote the estimated value function calculated by the

function approximator of the critic. The TD error is

calculated as

r̂ðtnÞ ¼ rðtnÞ þ gvPðsðtnÞÞ2 Pðsðtn21ÞÞ: ð14Þ

The time intervals are not fixed in Eq. (13), although its

form is similar to Eq. (1). It appears incorrect that Eqs. (13)

and (14) do not include information of the time interval, but

they actually work very well as shown in Section 3. Because

Fig. 3. TD-learning using via-points. Actors 1 and 2 create rate of change in

position ðnv1Þ and time interval ðtv1Þ of the next via-point. Actors 3 and 4

create those of the tentative via-point.

Fig. 2. Temporally localized via-points and optimal trajectory generation.

Provisional trajectory (broken line) is generated by using a tentative via-

point ( £ ) in addition to the next via-point.
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the information of the time interval is included in the action

and the system can actively control the time interval as

described in Section 2.3.1, Eqs. (13) and (14) need not

include information of the time interval. Although gv is

fixed in Eq. (14), gv operates differently from g in Eq. (3).

When the via-points are sparsely located in time, the large

time interval tn 2 tn21 corresponds to large g in Eq. (3). In

this case, Eq. (14) takes a long-term view of the reward

accumulation. Conversely, when the via-points are densely

located in time, the system tries to gain an immediate

reward.

The function approximator of the critic estimates PðsðtnÞÞ

and modifies its weights so that r̂ðtnÞ! 0: When a positive

r̂ðtnÞ is observed, the weights of the function approximator

of actors 1 and 2 are modified so that they calculate the same

outputs when the same state s appears. The weights of the

function approximator of actors 3 and 4 are modified so that

x0nþ2 and t0nþ2 are equivalent to xnþ2 and tnþ2 in a supervised

fashion.

3. Computer simulation of cart-pole swing up task

We tested the framework described in section 2 with a

challenging task, the cart-pole swing up task (Fig. 4)

(Atkeson & Schaal, 1997a; Doya, 1997, 2000), which is a

strongly nonlinear extension of the well known cart-pole

balancing task (Barto et al., 1983).

3.1. Cart-pole swing up task

The pole has to be swung up from the down position

ðu ¼ 2pÞ and then balanced in the upright position

ðcosðuÞ ¼ 1Þ:

We used the same dynamic equation as the pendulum

used by Atkeson and Schaal (1997a), except for the

parameters. The dynamic equation of the cart-pole is

_uiþ1 ¼ ð1 2 a1Þ _ui þ gDt=lðsinðuiÞ þ €xicosðuiÞ=gÞ;

where ui; _ui; €ui; €xi are the angular position, angular velocity,

angular acceleration and horizontal acceleration of the

rotation axis at the ith sampling time, respectively. a1 is the

viscous term, Dt ¼ 1=60 s is the sampling time, g ¼ 9:81 �

m=s2 is the gravity acceleration, and l ¼ 0:35 m is the length

of the pole. We set a1 ¼ 0:01 in this experiment.

We use cart position x as via-point location xn and

acceleration €xi as action u; which can be easily obtained by

differentiating the x trajectory twice. The state vector is

sðtÞ ¼ ðu; _u; x; _x where x and _x are the position and velocity

of the cart, respectively. Each trial was started from an

initial state sð0Þ ¼ ð2p; 0; 0; 0Þ: The reward was given by

rðtnÞ ¼ cosðuðtnÞÞ: When the cart bumped into the end of the

track, the terminal reward was rðtÞ ¼ 22; otherwise, each

trial lasted for 12 seconds.

3.1.1. Approximation function

As the approximation function of the critic and the

actors, we used the Adaptive Gaussian Softmax Basis

Function (AGSBF), which is the same as that used by

Morimoto and Doya (1998). The output of the AGSBF is

calculated as follows. For a given n-dimensional input

vector s; the activation function of the kth unit is calculated

by

akðsÞ ¼ expð2kMkðs 2 ckÞk
2
=2Þ; ð15Þ

where ck is the center of activation and Mk is a matrix that

determines the shape of the activation function. The

Softmax Basis Function is then given by

bkðsÞ ¼ akðsÞ=
XK
l¼1

alðsÞ; ð16Þ

where K is the number of basis functions. The output of the

AGSBF is given by the inner product of the basis functions

and the weights wk as follows

yðsÞ ¼
XK
k¼1

wkbkðsÞ: ð17Þ

A new unit is allocated if the error is larger than criterion

emax and the activation of all existing units is smaller than

threshold amin: The new unit is initialized with ck ¼ s; Mk ¼

diagðmiÞ; and wk ¼ ydðsÞ; where mi is the inverse of the

radius of the basis function.

3.1.2. Critic

The output of the critic is PðsðtnÞÞ ¼ yðsðtnÞÞ; which is

given by Eq. (17). The critic’s learning uses the TD(l)

algorithm (see Sutton & Barto, 1998 for a detailed and

comprehensive description) as follows.

Dwk ¼ hc�rðtnÞekðtnÞ; ð18Þ

�rðtnÞ ¼

rþ if r̂ðtnÞ $ rþ

r2 if r̂ðtnÞ # r2

r̂ðtnÞ otherwise

8>><
>>: ; ð19Þ

Fig. 4. Swing up task. The pole is initially hanging down ðu ¼ 2p) from a

cart. The goal of this task is to move the cart so that the pole becomes

upright (u ¼ 0 or u ¼ 2p) and balanced. m; g; u; and x denote mass of pole

tip, gravity constant, angle of the pole, and horizontal position of the cart,

respectively.
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ekðtnÞ ¼ gvlekðtn21Þ þ bkðsðtnÞÞ; ð20Þ

where ekðtnÞ denotes an eligibility trace of each weight. When

the time interval is increased, r̂ðtnÞ sometimes becomes large.

Because the large r̂ðtnÞ tends to destabilize the critic’s

learning, we limited r̂ðtnÞ to �rðtnÞ:The parameters of the critic

are gv ¼ 0:9; l¼ 1; mi ¼ ð1=ðp=10Þ;1=ðp=2Þ;1=0:5;1=5Þ;

amin ¼ 0:6; emax ¼ 0:01; hc ¼ 0:3; rþ ¼ ðPþ2P2Þ=500; and

r2 ¼2ðPþ2P2Þ=500; where P2 and Pþ are the minimal

and maximal levels of the estimated value function.

3.1.3. Actors

The output of the actors are ziðsðtnÞÞ ¼ yiðsðtnÞÞ: We limit

the output z1ðsðtnÞÞ ¼ nv1ðtnÞ to [21,1] and z2ðsðtnÞÞ ¼

tv1ðtnÞ to [0.05,1]. The size of the perturbation tapered off as

the performance improved (Gullapalli, 1990). The perturb-

ations n1; n2 are applied to actors 1 and 2 as follows.

lniðtnÞl , n0i min 1;max 0;
Pþ 2 PðsðtnÞÞ

Pþ 2 P2

� �� �
; ð21Þ

where i ¼ 1; 2; and P2 and Pþ are the minimal and maximal

levels of the estimated value function. The weights of actors

1 and 2 are updated by the LMS rule

Dwk ¼
haniðtnÞbkðsðtnÞÞ if r̂ $ 0

2haniðtnÞbkðsðtnÞÞ otherwise

(
; ð22Þ

where ha is the learning rate.

The trajectory is smoothly connected at via-points, if the

outputs of actors 3 and 4 at time n 2 1 are the same as the

outputs of actors 1 and 2 at time n; respectively. The weights

of actor 3 are updated as follows.

Dwk ¼ habkðsðtn21ÞÞðz1ðsðtnÞÞ2 z3ðsðtn21ÞÞÞ: ð23Þ

The weights of actor 4 are updated as follows.

Dwk ¼ habkðsðtn21ÞÞðz2ðsðtnÞÞ2 z4ðsðtn21ÞÞÞ: ð24Þ

The parameters of the actors are mi ¼ ð1=ðp=10Þ;

1=ðp=2Þ; 1=0:5; 1=0:5Þ; amin ¼ 0:6; emax ¼ 0:01; and ha ¼ 0:3:

3.2. Results

Fig. 5 shows an example of the learned behavior of the

system (the 6991st to the 7000th trials are superimposed).

Fig. 5a and b show the time course of x and u; respectively.

In Fig. 5a, the circles ðWÞ and xs ð£Þ show the via-points

and tentative via-points, respectively (the positions of W

and £ are almost the same). In the figure, the perturbation

was not applied to the 7000th trial (shown as a thick line).

The 6991st to 6999th trials are also shown but are

indistinguishable because the lines overlap each other.

After a preparatory swing to build up the inertial energy,

the system succeeded in swinging up the pendulum and

maintaining its balance. At the first period of the move-

ment, the via-points are sparsely located in time. In this

period, the system is controlled in a feed-forward

manner. After the pole swings up, the via-points are

densely located in time, since the system needs fine

feedback to keep the balance.

The system generates such via-point locations in the

following way. In the initial part of the movement, in

climbing up the slope of the value function, the system can

get a larger reward with a small number of steps by taking

a long interval of via-points. When the system tries to keep

the balance, the via-points have to be densely located in

time. If the via-points are sparsely located, the state will

quickly fall down from the peak of the value function.

Fig. 6 shows the relationship between the holding time

at the inverted position and the trial number. As a measure

of the swing up performance, we defined the time in which

the pole stayed up ðcosðuÞ . cosðp=4ÞÞ as tup: Fig. 6a shows

the performance averaged over 10 runs. Fig. 6b shows the

individual performances of 10 runs. In Fig. 6b, each line

was made by averaging every 100 trials over a single run.

We can see that the system shows a good learning

performance.

Fig. 6. Relationship between the keep time at the inverted position and the

trial number. tup denotes the time in which the pole stayed up ðcosðuÞ .

cosðp=4ÞÞ: (a) performance averaged over 10 runs. (b) individual

performances of 10 runs. Each line was made by averaging every 100

trials over a single run.

Fig. 5. An example of the behavior of the system. (a) Time course of the cart

position ðxÞ: + and £ denote via-points and tentative via-points, respectively.

First 1 s, two via-points are located sparsely in time, as with feed-forward

control. To keep the pole upright, via-points are densely located in time

after second one. (b) time course of the angle of the pole ðuÞ:
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3.3. Comparison with conventional TD-learner

We compared the performance of the via-point frame-

work (Fig. 3) with that of the conventional actor–critic

framework (Fig. 1a, the actor output the desired velocity of

the cart. Then the desired acceleration was calculated and

fed to the cart). Fig. 7 shows the relationship between the

holding time at the inverted position and the trial number of

the conventional actor–critic framework. In Fig. 7, the lines

show the performance averaged over 10 runs with the

conventional actor–critic framework. The numerical labels

‘1’, ‘5’, ‘10’, and ‘15’ denote the actor and critic changes in

output at every 1, 5, 10, and 15 sampling times, respectively,

where the sampling time is Dt ¼ 1=60 s:

In the conventional actor–critic framework illustrated in

Fig. 1a, the critic and actor update their output at fixed time

intervals. From Fig. 7, in the conventional actor–critic

framework, good performances are obtained using intervals

‘5’ and ‘10’. Intervals ‘1’ and ‘15’ do not show good

performance in comparison with ‘5’ and ‘10’. We have to

choose the best control interval for the critic and actors to

achieve good performance using the conventional TD-

learner. On the other hand, in the via-point framework, the

best control intervals are automatically obtained as a result

of reinforcement learning. This is a good property for an

environmental adaptation of biological systems.

In conventional actor–critic architecture, if the sampling

interval is sufficiently small, the actor can output a smooth

trajectory. In this case, the scale of the problem becomes too

large to solve. As shown in experimental results, the system

cannot find a way to swing up the pole when the interval is 1.

If the time interval is large (interval 10), although the

exploration is easy, the actor may output jerky motion. This

is not bad for the swing up task itself, but it could induce

harmful effects to mechanical systems.

Even if the smoothness is only local, it is very important

for motor control. Smooth trajectory eliminates the harmful

effects. This is a very good property for motor control

systems and biological systems. We choose the minimum

jerk trajectory as the smooth trajectory because it is well

known as a model of human arm movement.

4. Conclusions

In this paper, we demonstrated that a hierarchical

reinforcement learning framework containing via-point

representation is effective for learning motor control. Since

the feedback gain of biological systems is low and delay is

large, high-speed movement must be controlled with feed-

forward control. In the framework proposed in this paper,

feed-forward-like control was acquired by introducing the

via-point representation. In the conventional TD-learner, we

must choose the best control interval to achieve good

performance. When a parameter of the environment (e.g. the

mass or length of the cart) is changed, we must readjust the

control interval. In the via-point framework, the best control

intervals are automatically obtained accordingly, when a

parameter of the environment is changed, the system is able

to adapt to a new environment automatically.

According to the recent results of a psychological

experiment, when we move the hand through a small set of

sequential targets, the sensory-motor system modifies the

ongoing movement with a continually updated internal

estimate of the environment (Todorov, 1998). The on-line

planning of via-points and trajectory in our model is in

accordance with the results of this psychological experiment.

When humans make goal-directed arm movements, we

show highly stereotypical trajectories, even though there are

an infinite number of possible trajectories. Based on

optimization principles for trajectory planning, several

models have been proposed, such as the minimum-jerk

(Flash & Hogan, 1985), the minimum-torque-change (Uno

et al., 1989a), the minimum-muscle-tension-change (Uno

et al., 1989b), and the minimum-motor command-change

models (Kawato, 1992). Recently, Harris & Wolpert (1998)

have proposed a minimum variance model to generate an

optimal trajectory. They present a unifying theory of eye

and arm movements based on the single physiological

assumption that the neural control signals are corrupted by

noise whose variance increases with size of the motor

command amplitude. In the presence of such signal-

dependent noise, the shape of a trajectory is selected to

minimize the variance of the final eye or arm position. For

the nonlinear two-jointed planar arm, they derived optimal

trajectories by parameterizing them by cubic splines and by

adjusting the knot locations using the simplex algorithm.

However, when we consider a biologically plausible way of

obtaining the minimum-variance trajectory, the reinforce-

ment learning framework seems to be suitable. Although we

used the minimum-jerk trajectory as an optimal trajectory in

this paper, we will integrate such a trajectory planning

mechanism into our model in the near future.
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Appendix A. Minimum jerk trajectory

Fig. A1 shows an optimal trajectory passing through the

start, via-, and end points. Let ðxs; _xs; €xs be position,

velocity, and acceleration at the start point where x [ Rn:

Similarly, we denote ðxv; _xv; €xv and ðxf ; _xf ; €xf as via- and

end points. tv and tf ; respectively, are the time intervals

between the start and via-points and between the via- and

end points. Here, we use the minimum jerk trajectory (fifth-

order polynomial) as the optimal trajectory. The minimum-

jerk trajectory can be obtained by using a recurrent neural

network when the velocity and acceleration at the end point

are equal to 0 (Hoff & Arbib, 1993). We can extend their

model to generate the minimum-jerk trajectory under

general conditions so that the velocity and acceleration at

the end points are not equal to 0 (Wada & Kawato, 1993). If

the position, velocity, and acceleration at these points are all

fixed, then we can calculate the minimum jerk trajectory.

Even if the velocity and acceleration at a via-point are not

fixed, we can calculate _xv and €xv Consequently, we can

calculate the minimum jerk trajectory passing through the

start, via- and end point, if the following variables are given:

ðxs; _xs; €xsÞ; xv; ðxf ; _xf ; €xfÞ; tv; tf : In this paper, we set the

velocity and acceleration at the end point to 0 for simplicity.

As described in Section 2.2, the first half of the trajectory is

used for control.
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