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\M ARE WORKING ON EASIER

OUR UNDERSTANDING OF HUMAN BEHAVIOR ADVANCES AS
ways to program behavior in humanoid
robots’ and potentia”y in other machines nd OUR HUMAN ROBOTICS WORK PROGRESSES_AND VICE VERSA-
computer systems, based on how we “pro-  TH|s TEAM’S WORK FOCUSES ON TRAJECTORY FORMATION AND

gram” behavior in our fellow human beings.
We have already demonstrated several sim- ~ PLANNING, LEARNING FROM DEMONSTRATION, OCULOMOTOR

ple behaviors, including juggling a single ball CONTROL, AND INTERACTIVE BEHAVIORS. THEY ARE
by paddling it on a racket, learning a folk !
dance by observing a human perforr i, PROGRAMMING ROBOTIC BEHAVIOR BASED ON HOW WE

drumming synchronized to sounds the robot ;1N s “PROGRAM” BEHAVIOR IN—OR TRAIN—EACH OTHER.
hears (karaoke drummingjuggling three

balls, (see Figure 1) performing a T'ai Chi
exercise in contact with a humaand vari-
ous oculomotor behaviofs. five rotary hydraulic actuators. It has 3olnverse kinematics and
Our current robot is DB (which stands fordegrees of freedom: three in the neck, twi i'nrajectory formation

Dynamic Brain), a hydraulic anthropomor-each eye, seven in each arm, three in each

phic robot with legs, arms (with palms butleg, and three in the trunk (see Figure 2p). One problem that robots with eyes face i
no fingers), a jointed torso, and a head (se€very DOF has a position sensor and a loadsually guided manipulation—for example,
Figure 2a and www.erato.atr.co.jp/DBJ).sensor except the eye DOFs, which have nehoosing appropriate joint angles that let i
DB was designed by the Sarcos companipad sensing. The robot is currently mountedeach out and touch a visual target. We us
and the Kawto Dynamic Brain Project atthe pelvis, so that we do not have to worriearning algorithms (described later in the art
(www.erato.atr.co.jp) and was built by Sar-about balance and can focus our studies afe) to learn the relationship between wher
cos (www.sarcos.com). The robot is approxupper-body movement. We plan to explarehe robot senses its limb is using joint senso
imately 1.85 meters tall, weighs 80 kg, andull-body motion in the future, probably with and where the robot sees its limb (referred {
contains 25 linear hydraulic actuators ana new robot design. in robotics as a model of thierward kine-
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Figure 2. The humanoid robot DB: () the full robot mounted at the pelvis; (b) the robot joints.
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0.15 classical way to make choices: imposing
optimization criteria on movement plan-
ning—for instance, by requiring that the syst
tem accomplish a task in minimum time o
with minimal energy expenditure. However
finding good cost functions that generate
- appropriate behavior is difficult. Our research
8 on trajectory planning explores an alterna
tive method of constraining complex move
ment planning—by building movements
from two kinds of movement primitives. The
first kind is known in neuroscience m®tor
tapesjn that the robot stores an explicit rep
0.15 resentation of a movement trajectory in
memory. When the robot needs information
on how to pitch a baseball, it finds the appro-
4 priate tape or template in memory and exe-
& 077?—— cutes it. More sophisticated versions of this
7 approach blend and edit a set of tapes to pro-

duce a movement.

Another kind of movement primitive is

0 1 2 3 4 5 6 7 8 9 10
(@) Time (seconds)

-0.15 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ based onmlynamical systemgve are explor-
0 1 2 3 4 5 6 7 8 9 10 ing simple dynamical systems that can gen-
(b) Time (seconds) erate either discrete or rhythmic movemeénts|

In this case, the robot initially needs only
Figure 3. Convergence of inverse kinematics for the humanoid robot using (a) the pseudo-inverse method and (b) the  speed and amplitude parameters to start a
modified extended Jacobian method. The latter is less oscillatory. movement. Learning is required to fine-tune
certain additional parameters to improve the
movement. This approach lets the robot learn
matic9. To touch a visual target, the robptwhich reliably gave us reasonable answersnovements by adjusting a relatively small set
must choose a set of joint angles that willWe also developed a more computationallpf parameters. We are also exploring how to
cause its finger to be at the target (known iefficient version of the extended Jacobian
robotics as thaverse kinematiggroblem). | that searches for appropriate joint angles to use these different types of primitives tg
Complex robots are interesting becauseeach toward a target and simultaneously generate full-body movement,
the inverse kinematics problem has hmptimizes a criterion (such as minimizinge learn their parameters using reinforce
unique solution: there are many ways fogravitational load). We improved the algp- ment learning, and
a robot to touch a target. What makesithm by making it search locally (using gra-» sequence and superimpose such move-
humanoid robots especially interesting is thadient descent) for a better set of joint angles ment primitives to accomplish more com-
they have a large number of “extra” joints,in the nearby space of all joint angle vectors plex movement tasks.
organized in a humanlike fashion with sevihat successfully caused the robot to touch
eral kinematic chains, with dynamic con-the target. This local search let us remove a For example, we have implemented adap
straints such as balance in addition to gedet of calculations, for which we compen-tive dynamic systems that enable a robot to
metric constraints. When the finger touchesated by using other learning algorithtns.| drum in time with a human drummer, as Figt
a target, the elbow might be up or down,|or The speed we gained let us apply the algare 4 show3.This ability to synchronize to
the back or waist might be bent to change théthm to our 30-DOF humanoid robot in reglexternal stimuli is an important component
shoulder’s position. This redundancy |igime. We compared the algorithm’s perfar-of interactive humanoid behavior.
advantageous because it enables a robotrmance with a different state-of-the-art algo- Inspiration from biology also motivates &
avoid obstacles and joint limits and attairrithm that uses the pseudo-inverse with optirelated trajectory-planning project on which
more desirable postures. From a control anahization. In both cases, DB started in| ave are working. A common feature in the
learning point of view, however, redundancynonoptimal posture and tried to follow a tar-brain is to employ topographic maps as bas
also makes it quite complicated to find goodjet with its right hand. The target moved withrepresentations of sensory signals. Sud
movement plans. How do we humans decideseudorandom motion generated by summaps can be built with various neural
what to do with our extra joints, and howming sinusoids of various frequencies. Devinetwork approaches—for instance, Self
should humanoid robots control all theirations from a nominal posture were pengalOrganizing Maps or Topology Representing
joints to make a coordinated movement?| ized in the optimization criterion. Our Networks® From a statistical point of view,
To solve this problem, we first used|aalgorithm had much better convergence thatopographic maps can be thought of as neural
redundant inverse kinematics algorithnthe other, as Figure 3 shows. networks that perform probability density
known as the extended Jacobian method, The work just described implements| aestimation with additional knowledge abou
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neighborhood relations. Density estimatio
is a powerful tool for performing mappings
between different coordinate systems, fo
performing sensory integration, and for serv
ing as a basic representation for other lear
ing systems. Topographic maps can also pe
form spatial computations that generat
trajectory plans. For instance, using diffu-
sion-based path-planning algorithms, wg¢
were able to learn obstacle avoidance alg
rithms. This work is also interesting from a
biological point of view, because the useful
ness of topographic maps in motor control i
far from understood.
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Learning

We are interested in how people anc
machines can learn from sensory informa-

Figure 4. The robot drums in synchrony with external sounds: (a) the average magnitude of the sound the robot hears;
(b) the robot drumbeats measured by a vibration sensor on the drum.

tion to acquire perceptual and motor skil
So, we are exploring neural networks, stat
tical learning, and machine learning alg
rithms. We are investigating three are:
supervised and unsupervised learning, lez
ing from demonstration, and reinforceme
learning.

Supervised and unsupervised learning
Function approximation can be used to le
nonlinear coordinate transformations al
internal models of the environmentVork-
ing with humanoid robots has forced us
develop algorithms that

e learn incrementally as training data
generated,

e learn in real time as the robot behav
and

» scale to complex, high-dimensional learn€orrelations. LWPR

ing problems.

Idealized engineering models often do

accurately model the mechanisms usead

build humanoid robots. For example, rigi
body-dynamics models perform poorly f
lightweight systems dominated by actua

dynamics, as is the case with our current ropot

DB. Therefore, we are developing learni
algorithms and appropriate representation

seach one assuming only a few directionschallenging, we added 29 features that we
isThis is similar to what sigmoidal feedforwardirrelevant random noise. LWPR handled th
oneural networks with one hidden layer do50-dimensional learning problem well: on
asEach hidden-layer neuron applies a simplaverage, each local model was 4D, and there
ard-D function to a weighted sum of its inputsywere 325 local models. LWPR used local
nthis is equivalent to placing that function jnmodels of lower dimensions than our previt
a certain direction in the input space. We coleus PCA-based algorithm. To our knowl-
lected data on the distribution of both humardge, this is the first incremental neuralr
and robot arm movement and developedetwork learning method that combines all
aroomputationally efficient methods to corre-these properties and is well suited for th
ndate the inputs and the output. Using princihigh-dimensional real-time learning prob-
pal components analysis (PCA), we discoviems posed by humanoid robots.
teered that we need only a 4D to 6D model in
any small region to fit the data well, evenLearning from demonstration. One way
though the movements span a very highae program our fellow human beings is tg
isdimensional space. The tough part of thishow them how to do a task. It is amazing
problem is to efficiently determine the impor-that such complex sensory input is useful far
D
P

D

edant directions in each part of the spacdearning. How does the learner know what i
LWPR can do this using the input—outpuimportant or irrelevant in the demonstration
How does the learner infer the performer’s
goals? How does the learner generalize
» learns rapidly using second-order learndifferent situations?
10t ing methods supporting incremental A graduate student typically needs at leas
to training, a year to program one of our humanoid
d-- uses statistically sound stochastic crosgebots to do a task. Humanlike learning from
or validation to learn, demonstration (LFD) should greatly reduce
of adjusts its local weighting kernels (howthe cost of programming these complex sys-
much and what shape area the locakms. We also expect that humanoid robo
model covers) based only on local infar-will be asked to perform tasks that people do,
mation to avoid interference with othertasks that a person can easily demonstrate.

ng
s to

acquire useful models automatically. Our ulti-
mate goal is to compare the behavior of these
learning algorithms with human (for exam-
ple, cerebellar) learningy. .
One algorithm that can deal with the high

dimensionality of humanoid robot learning We have tested LWPR on modeling thescratch by trial and error. Rather, they extrac
is locally weighted projection regressidn| dynamics of our anthropomorphic robot armknowledge about how to approach a problem
LWPR models data with many local modelswhich has 21 inputs. To make the test mprby watching others perform a similar task

models, LFD might also provide one of the most
has a computational complexity that|ismportant footholds to understand the
linear in the number of inputs, and information processes of sensorimotor con
can detect redundant or irrelevant inpytgrol and learning in the brain. People and
many animals do not just learn a task from
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Figure 5. Perceiving human motion. We can see how well our perception algorithms track. (a) A person walks by and his motion is recorded. (b) The perception system lays a graph-
ical model on top of the human motion where it believes the person’s body parts are.

and by using what they already know. Fronframework of competitive learning: eaghPerceiving human movemeno. understand
the viewpoint of computational neuro-movement primitive predicts the outcome|of task demonstration, the robot must be able
science, LFD is a highly complex problema perceived movement and tries to adjust it® see what is going on. We have focused on
that requires mapping a perceived action thatarameters to achieve an even better predittie perception of human movement, exploit
is given in an external-coordinate (world)tion, until a winner is determined. In prelim-ing our knowledge of how people move tg
frame of reference into a totally differentinary studies with humanoid robots, we havénform our perception algorithms. For exam
internal frame of reference to activate motodemonstrated the feasibility of this approacltple, one theory is that we move in such a way
neurons and subsequently muscles. RecelNevertheless, many open problems remgaias to minimize how fast muscle forces
research in behavioral neuroscience hdsr research. We are also trying to develoghange.We can use this theory about mover
shown that specialized “mirror neurons” jntheories on how the cerebellum could benent generation to select the most likely
the frontal cortex of primates seem to be thimvolved in learning movement primitives, interpretation of ambiguous sensory infut.
interface between perceived movement and To explore these issues, we implemented Our first thought was to borrow motion-
generated movement; that is, these neuroh$D for a number of tasks, ranging from folkcapture techniques from the movie and video
fire very selectively when a particular move-dancing to various forms of juggling. We game industry. We experimented with optical
ment is shown to the primate, and when thilentified three key challenges: systems that track markers, systems where the
primate itself executes the movement. Brain- teacher wears measurement devices, and
imaging studies with people are consistent to be able to perceive and understandision-based systems with no special markers.
with these results. what happens during a demonstration; However, we found that controlling a physical
Research on LFD also offers tremendqus to find an appropriate way to translate thelevice rather than drawing a picture required
potential for medical and clinical applica- behavior into something the robot carsubstantially modifying these techniques.
tions. If we can start teaching machines by actually do—it is humanoid, not human, The organizing principle for our percep-

showing, our interaction with machines will
become much more natural. If a machine ¢an
understand human movement, it can also be
used in rehabilitation as a personal trainer
that watches a patient and provides specific
new exercises to improve a motor skill.
Finally, insights into biological motor con-
trol that are developed in LFD can help us
build adaptive prosthetic devices.
We hypothesize that a perceived move-

ment is mapped onto a finite set of movemer$olving these challenges is greatly facilitateéhputs simultaneously rather than sequen-
primitives that compete for perceived actignby enabling the robot to perceive the teacherially, so we can apply regularization operar
We can formulate such a process in thgoal.

so it has many fewer joints and ways |tdion algorithms is that they should be able tp
move, and it is weaker and slower than aecreate or predict measured images based
human; and the recovered information. In addition, we
to enable the robot to fill in missing can make the movement recovery more relj-
information using learning from prac- able by adding what are known r@gular-
tice—many things are hard or impossiblézationterms to be minimized. These terms
to perceive in a demonstration, such|akelp resolve ambiguities in the sensor data.
muscle activations or responses to errpiiSor example, one regularization term penal-
that do not occur in the demonstration| izes high rates of estimated muscle force
change. We also process a large time range

=)

tors across time and easily handle occlusig
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and noise. Thus, perception becomes &g
optimization process, trying to find the under
lying movement omotor programthat pre-
dicts the measured data and deviates the le
from what we know about human movemen
To deal with systems as complex as th
human body and the humanoid robot, we hg
to use a representation with adaptive resol
tion. We chose B-spline wavelets. Wavelet
are removed when their coefficients are smg
and added when the prediction error is large
We have also developed large-scale opt
mization techniques that handle the spars
representations we typically find in observe(
data. We designed these optimization teck
niques to be reliable and robust, using secon
order optimization with trust regions and idea
from robust statistics. Figure 5 shows a
example of our perception algorithms applie
to frames from a high-speed video camera.

Translating movement and inferring goals
As one test case for LFD, we captured th
movements of a skilled performer doing the

Okinawan folk dance Kacha-shiusing the  Figure 6. A frame from a graphics visualization of the reconstructed motion. Compared to the human visualization (a),
perception techniques just described, wthe visualized robot's shoulder and elbow degrees of freedom (b) are constrained.

found that the teacher’s motions exceede : -

the robot’s possible joint movements. We ha
to find a way to modify the demonstration tg
preserve the “dance” but make it possible fa
the robot to do. We considered severs
options:

e Scale and translate the joint trajectorie
to make them fit within robot joint lim-
its, without taking into account the Carte
sian location of the limbs.

* Adjust the visual features the robot is try
ing to match until they are all within
reach. This can be done by translating @
scaling the images or 3D target locationg
How to do this in a principled way is not
clear, and the effects on joint motion ar¢
not taken into account.

 Build the joint limits into a special ver-
sion of the perception algorithms, so tha
the robot can only “see” feasible posture

in interpreting or reasoning about the
demonstration. This approach trades o
joint errors and Cartesian target error:
straightforwardly.

Figure 7. A frame of motion showing the end of a catching sequence.

Parameterize the performance in some This is very time consuming, unless wethis work that we need to develop algorithm
way (knot-point locations for splines, far ~ can develop an automatic criterion functhat identify what is important to preserve in
example), and adjust the parameters so tion for scoring the motion. learning from a demonstration, and what i
that joint limits are not violated. Human irrelevant or less important. For example, w
observers score how well the original per- We implemented the first option, as showrhave begun to implement catching based @
formance’s style or essence is preseryeid Figure 6. Clearly, we should also consideLFD (see Figure 7), where the learned move
and select the optimal set of parametershe alternative approaches. We learned froment must be adapted to new requiremen
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Figure 8. (&) The anthropomorphic robot arm gripping a pendulum. In this configuration, the pendulum axis is aligned with the fingers and with the forearm. (b) The pendulum con-
figurations during a human swing upward and a successful robot swing upward after learning. (c) The pendulum angles and hand positions for several demonstration swing-ups by a
person. The pendulum starts at 8= —7z and a successful swing up moves the pendulum to 6= 0. (d) The hand and pendulum motion during robot LFD using a nonparametric
model.

such as the ball's trajectobyn catching, the| ments to juggle successfully. We have mardemonstration, it still must practice the task
hand must intercept the ball at the right placaally implemented several feasible jugglingooth to improve its performance and to est
in space and at the right time; the joint anglpatterns; Figure 1 shows one such pattern mate quantities not easily observable in th
trajectories are secondary. In summary, something more abstract thademonstration. In our LFD approach, the robg

We have begun to implement learning hownotion trajectories must be transferred|ifearns a reward function from the demonstra
to juggle three balls from demonstrationLFD. The robot must perceive the teacher'sion that then lets it learn from practice without
where actuator dynamics and constraints lagoals to perform the necessary abstractiofurther demonstration@The learned function
crucial. Because the hydraulic actuators limitWe are exploring alternative ways to do thisrewards robot actions that look like the
the joint velocities to values below that observed demonstration. This simple reward
observed in human juggling, the robot muskearning from practice using reinforcementfunction does not capture the true goals ¢
significantly modify the observed move-learning After the robot observes the teacher'sactions, but it works well for many tasks.

= R

=
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The robot also learns models of the tas
from the demonstration and from its repeate
attempts to perform the task. Knowledge o
the reward function and the task models lef
the robot compute an appropriate contrg
mechanism. Using these methods, our rob
arm learned how to balance a pole on a fin
ger tip in a single trial. The arm also learne
the harder task of swinging a pendulum fron
a downward-pointing position to point up
(see Figure 8).

We learned these lessons from thes
implementations:

» Simply mimicking demonstrated motions
is often not adequate.

» Given the differences between the huma
teacher and the robot learner and th
small number of demonstrations, learn
ing the teacher’s policy (what the teache
does in every possible situation) is ofte
impossible.

» However, atask planner can use a learng
model and a reward function to computé
an appropriate policy.

» This model-based planning process suf
ports rapid learning.

» Both parametric and nonparametric mod
els can be learned and used.

» Incorporating a task-level direct learning
component that is non-model-based, i
addition to the model-based planner, i

useful in compensating for structural
modeling errors and slow model learningFigure 9. A close-up of the robot head, showing the wide-angle and narrow-angle cameras that serve as eyes.

Oculomotor control = 02 - -
-%E g m 'I_.' I'-I .Ir, -_J “'.. P -l.l._-' s TRy |I:., |r' ‘.\_.'-'I'.I I'||._ + mn

The humanoid robot's complexity forcess T8, " '¢ "8 P T LT RE T AL RS AR B bl b SR
us to develop autonomous self-calibration () 0 5 10 15 20 o5 30 35
algorithms. Initially we are focusing on
controlling eye movements, where percep- = o2F T " 7 ? T —]
tion and motor control strongly interact. Fon o § 0 b— — — -'!'_'.-J'IE-"-W_:._.ILI 1 |-| fipa | v I'.'r|"'.-"'"--'ri.'lz' Y
example, the robot must compensate for head” 8 _, o | || LS L B A il
rotation by counter-rotating the eyes, so that (b) 0 5 10 15 20 25 30 35
gaze is stabilized. This behavior is known as
thevestibulo-ocular reflexMiscalibration of _%,.g 02k & TR ? ]
VOR behavior strongly degrades vision| 5.8 E "'-'\'l-"-,l LA 'I'.;"~,.I1- .‘_~.~I:',;'-_".‘r'.,-“‘.-V'-.I-,,ﬂrwa-.-ﬂ.*..--u-«--.*.-‘-,--:u R
especially for the robot's narrow-field-of-| & _,of ~~ ! " : . : : .
view cameras that provide its “foveal” vision. (c) 0 5 10 15 20 25 30 35

We are exploring a learning algorithm )
known adeedback error learningvhere we Time (seconds)

use an error signal (in this case an image slfjgyre 10. The robot's (a) head position, (b) eye position, and (c) retinal image slip during vestibulo-ocular reflex
on the retina during head motion) to train geaming.

control circuit. This approach is modeled on

the adaptive control strategies used by the pri-
mate cerebellum. We used eligibility traces, éearning, to compensate for unknown delays In experiments, our humanoid oculomos
concept from bhiology and reinforcemeTnﬁn the sensory feedback pathway. T tor system (see Figure 9) converged to exce
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Figure 11. Sticky-Hands interaction with a humanoid rohot.
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(b)

Figure 12. The Sensuit motion-capture system.

a 2 A

and sometimes it is not clear who leads.

A key research issue in generating in
teractive behaviors is generalizing learne
motions. Italso became clear that when peg
ple interact with a humanoid robot, they
expect rich and varied behavior from all parts
of the body. For example, it is disconcerting
if the robot does not exhibit humanlike eye
and head movements or fails to appear to be
attending to the task. Interacting with the
robot rapidly becomes boring if the robot
always responds in the same way in any
given situation. How can the robot recognize

d
J

o

a particular style of interaction and respon
appropriately? If humanoid robots are goin
to interact with people in nontrivial ways, we
will need to address these issues as well

control and learning issues.

Understanding human
behavior

We are using a variety of motion capture
systems to understand the psychophysics pf
1 human movement. We are also exploring

how our theories implemented in DB com;-
pare to human behavior to find out which
movement primitives biological systems
employ and how the brain represents such
primitives. One goniometer-based measure
ment system is the Sarcos Sensuit (see Fig-
ure 12), which simultaneously measures 35
lent VOR performance after approximatelyDOFs of the human body. It can be used for
30 to 40 seconds (see Figure 10), even in theal-time capture of full-body motion, as an
presence of control system nonlinearitiesadvanced human—computer interface, or t
Our future work will address adding smoothcontrol sophisticated robotic equipment. The
pursuit and saccadic behavior and enablingpmplete Sensuit, worn like an exoskeleton
all these learning systems to run simultanedoes not restrict motion for most movements,
ously without interfering with each other. while an array of lightweight Hall-effect sen-
sors records the relative positions of all limbs
at sampling rates up to 100 Hz. A platformr
independent OpenGL graphical display can
be used to simultaneously show the captured

We have explored two kinds of interactivemotion in real time and to generate and play
behavior with DB: catching and a T'ai Chiback animated sequences of stored data files.
exercise known as Sticky Hands or Push Our primary interest is to analyze human
Hands? The work on catching forced us todata from the Sensuit and other motion cap-
develop trajectory generation procedures thatire and vision systems with respect to cer-
can respond flexibly to demands from theain task-related movements. One key ques-
environment, such as where the ball is goindion we seek to answer in this context is how
The work on Sticky Hands explored robothe human motor cortex efficiently ana-
force control in contact with a person (sedyzes, learns, and recalls an apparently infi-
Figure 11). This task involves the person andite number of complex movement patterns
the robot moving together through varied angvhile being limited to a finite number of
novel patterns while keeping the contact forcaeurons and synapses. Are there underlying
low. Sometimes the human “leads” or deterregularities, invariances, or constraints on
mines the motion, sometimes the robot leadduman behavior? We have already dis

o

Interactive behaviors
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cussed how we can reduce the dimensip®711770 as well as a University of Southern G
ality of the movement data in any localifornia Zumberge grant.

neighborhood to under 10 dimensions,
how we have observed that people tend to

move so as to minimize the rate of changReferences

of muscle forces. These preliminary stud-

ies will help us develop new concepts for 1-

controlling humanoid robotic systems with
many degrees of freedom.

PROGRAMMING HUMANLIKE BE-
haviors in a humanoid robot is an important
step toward understanding how the human
brain generates behavior. Three levels
essential for a complete understanding of
brain functions: the computational-hard-
ware level, information representation and
algorithms, and computational theory.
are studying high-level brain functions
using multiple methods such as neurophys-
iological analysis of the basal ganglia and
cerebellum, psychophysical and behavioral
analysis of visuo-motor learning, measure-
ment of brain activity using scanning tech-
niques such as MRI, mathematical analysis,

computer simulation of neural networks, and 5.

robotics experiments using humanoid robots.
For instance, one of our approaches is trying
to have a robot learn a neural-network mogdel
for motor learning that includes data from

psychophysical and behavioral experimentsS-

as well as from brain MRIs. The robot repro-
duces a learned model in a real task, and we
can verify the model’s ability to generate

appropriate behavior by checking its robust-7-

ness and performance. This is only one
example of the attention being given to the
study of brain functions using humanoid
robots. This body of work should be an
important step toward changing the future| of
brain science®
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