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Haruno, Masahiko and Mitsuo Kawato. Different neural correlates
of reward expectation and reward expectation error in the putamen
and caudate nucleus during stimulus-action-reward association
learning. J Neurophysiol 95: 948–959, 2006. First published October
5, 2005; doi:10.1152/jn.00382.2005. To select appropriate behaviors
leading to rewards, the brain needs to learn associations among
sensory stimuli, selected behaviors, and rewards. Recent imaging and
neural-recording studies have revealed that the dorsal striatum plays
an important role in learning such stimulus-action-reward associa-
tions. However, the putamen and caudate nucleus are embedded in
distinct cortico-striatal loop circuits, predominantly connected to mo-
tor-related cerebral cortical areas and frontal association areas, respec-
tively. This difference in their cortical connections suggests that the
putamen and caudate nucleus are engaged in different functional
aspects of stimulus-action-reward association learning. To determine
whether this is the case, we conducted an event-related and compu-
tational model–based functional MRI (fMRI) study with a stochastic
decision-making task in which a stimulus-action-reward association
must be learned. A simple reinforcement learning model not only
reproduced the subject’s action selections reasonably well but also
allowed us to quantitatively estimate each subject’s temporal profiles
of stimulus-action-reward association and reward-prediction error
during learning trials. These two internal representations were used in
the fMRI correlation analysis. The results revealed that neural corre-
lates of the stimulus-action-reward association reside in the putamen,
whereas a correlation with reward-prediction error was found largely
in the caudate nucleus and ventral striatum. These nonuniform spa-
tiotemporal distributions of neural correlates within the dorsal stria-
tum were maintained consistently at various levels of task difficulty,
suggesting a functional difference in the dorsal striatum between the
putamen and caudate nucleus during stimulus-action-reward associa-
tion learning.

I N T R O D U C T I O N

Because learning appropriate behaviors for given situations
through reward and penalty information is crucial for living,
the neural mechanisms involved in reward-based behavioral
learning have attracted enormous attention in system neuro-
science. When we are confronted with new and uncertain
situations, acquisition of stimulus-action-reward association
seems essential for selecting the optimal behavior. This is
because a better action for a given situation can be easily
selected by comparing expected rewards according to the

combination of a specific contextual cue, which characterizes
the situation and possible choices of action.

Previous human and nonhuman primate studies have indi-
cated that the dorsal striatum is a key brain structure for
learning such prediction. When human subjects learn to select
appropriate behaviors in a stimulus-action-reward association
task, the caudate activity in each learning block is correlated
with the amount of behavioral change that the subject makes in
a block (Haruno et al. 2004). Another functional MRI (fMRI)
study reported that activity in the anterior striatum (mainly the
caudate nucleus) is correlated with the reward-prediction (TD)
error during behavioral learning (O’Doherty et al. 2004). A
considerable number of fMRI studies have also revealed a
correlation between activity in the ventral striatum and reward-
prediction error in regard to both primary rewards (Berns et al.
2001; McClure et al. 2003; O’Doherty et al. 2003; Pagnoni et
al. 2002) and monetary rewards (Breiter et al. 2001; Knutson et
al. 2001). In addition, caudate activity is reported to be corre-
lated with prediction of reward in tasks that do not include
behavioral learning (i.e., stimulus-reward association) (Del-
gado et al. 2000; Tricomi et al. 2004). Consistent with human
data, neural-recording studies on monkeys have shown the
involvement of the putamen (Hikosaka et al. 1999; Matsumoto
et al. 1999; Tremblay et al. 1998) and caudate nucleus (Kawa-
goe et al. 2001; Shidara et al. 1998; Tremblay et al. 1998) in
reward association learning tasks.

Closely related to learning in the striatum, midbrain dopa-
mine neurons projecting to the striatum fire at reward delivery
before learning, while the activity shifts forward in time to the
presentation of a reward cue when the reward is predictable
from the cue (Hollerman and Schultz 1998; Schultz et al. 1992,
2003; Takikawa et al. 2004). The reinforcement learning mod-
els can explain this temporal shift (Schultz et al. 1992) in terms
of the temporal difference (TD) error, suggesting that reward
prediction, whether action-dependent or action-independent, is
learned in the dorsal striatum by using the TD error (Brown et
al. 1999; Houk et al. 1995; Montague et al. 1996). There are
several possible implementations of TD models, but the two
most prevalent examples are the actor-critic architecture and
Q-learning (Sutton and Barto 1998). The former learns the
action-independent evaluation of context (critic) and how to act
in the context (actor) separately, whereas the latter acquires a
single representation of stimulus-action-reward association
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dubbed the Q-table. All of the experimental data described
above are consistent with the TD models.

Nevertheless, no previous experimental or modeling study
has incorporated the following anatomical findings, which
could enhance our functional understanding of the dorsal
striatum during stimulus-action-reward association learning.
Specifically, the anatomical connections of the putamen are
dominant in sensory-motor-related areas such as the premotor
and primary motor cortices (Alexander et al. 1990; Gerardin et
al. 2003; Parthsarathy et al. 1992; Selemon and Goldman-
Rakic 1985; Takada et al. 1998), while those of the caudate
nucleus are dominant in sensory-reward-related areas such as
the orbitofrontal and prefrontal cortices (Alexander et al.
1990). This difference suggests that the putamen is involved
mainly in evaluating actions in terms of sensory contexts and
rewards, whereas the caudate nucleus is involved mainly in
comparing actual and predicted rewards for learning.

To empirically examine this hypothesis, we conducted an
fMRI study of a stimulus-action-reward association task in
which subjects were asked to learn an advantageous button-
push (left or right) in response to visual stimuli. In this task, the
combination of the stimulus and the subject’s button push
stochastically determines monetary reward. The visual stimu-
lus, button-push, and delivery of monetary reward cue were
separated from each other, by several to 10 s, in this order.
From the temporal design of the task, we could expect that
subjects needed to form stimulus-action-reward association for
decision-making at the stimulus onset, whereas the comparison
between actual and predicted rewards could be made only at
reward delivery timing. To estimate the stimulus-action-depen-
dent reward prediction (SADRP) and reward-prediction error
(RPE) in each trial within the subjects’ brains, we adopted the
Q-learning model because it handles stimulus-action-reward
association directly. Importantly, RPE in this study is not
identical to the TD error. Within the context of this study, the
relationship between TD error and our SADRP and RPE is as
follows. At the beginning of learning, RPE is nearly equivalent
to TD error, and SADRP is close to 0. At the later stage of
learning, RPE at the reward delivery timing corresponds to the
stochastic component of TD error, because the predictable
reward can already be estimated by SADRP at the cue timing.
Accordingly, the temporal difference of SADRP at the cue
timing is equivalent to the predictable part of the TD error.
However, the temporal dissociation between SADRP and RPE
is critical to our hypothesis on the different contributions of the
putamen and caudate nucleus. Therefore we conducted an
event-related correlation analysis of fMRI data with SADRP
and RPE.

M E T H O D S

Subjects

Twenty healthy adults (23–31 yr old, 11 males and 9 females, all
right-handed) participated in the experiment. Informed consent of the
participants was obtained beforehand, and the protocol was approved
by the institution’s ethics committee.

Experimental design

In a TEST trial (Fig. 1A), subjects learned the stochastic association
between a visual stimulus, a button-push, and rewards to maximize

their total monetary rewards. In each trial, after one of three fractal
stimuli (FSs) was presented (onset at 0.7 s), subjects pushed the left or
right button following a beep sound (randomized at 5.2 or 6.2 s). A
small green circle appeared either to the left or right of the fixation
cross to show which button had been selected. All subjects pushed the
buttons with the index or middle finger of their right hand. If the trial
was successful, the figure frame turned yellow (randomized at 10.2 or
12.2 s) and the subject earned a 50-yen reward. Otherwise, the frame
turned purple and the subject suffered a 50-yen penalty (not shown in
Fig. 1A).

The actual outcome of each button-push—success or failure—was
stochastically controlled depending on the fractal stimulus presented
and the subject’s button-push. As an example of how this stochasticity
works, Fig. 1 shows experimental session 2 (S2 out of three sessions,
S1–S3), which was controlled with a probability of 0.8 (80%). For the
purple fractal figure (FS1) in this example, a left button-push yielded
�50 yen with a probability of 0.8 and �50 yen with a probability of
0.2. A right button-push, on the other hand, yielded �50 yen with a
probability of 0.2 and �50 yen with a probability of 0.8. Therefore the
optimal behavior for FS1 was to push the left button, which the
subjects had to learn by trial and error. In S2, the dominant probabil-
ities of the other two fractal figures (FS2 and FS3) were also 0.8, and
the advantageous button-push was randomized for left or right (opti-
mal behaviors were FS1: left, FS2: right, and FS3: left). Note that
subjects could not develop a stimulus-action-reward association be-
fore presentation of the FS. Importantly, the subjects were instructed
to decide which button to push as soon as the FS was presented. This
suggests that the subjects most likely associated action, stimulus, and
reward for decision-making at the time of stimulus presentation
(shown as SADRP in Fig. 1A) and computed the reward prediction
error at the time of reward delivery (shown as RPE in Fig. 1A), which
would validate the event-related fMRI analysis later. The occurrence
of the three fractal figures was controlled equally and pseudorandomly
by using the same random number sequence for all subjects to reduce
the variance of learning speed across subjects. Each trial lasted 19 or
21 s, and one TEST block included four repetitions of a trial (Fig. 1C).
The accumulated reward was displayed above the figure frame and
updated at the moment of reward delivery.

In a CONTROL trial (Fig. 1B), the subjects passively pushed the
same button as in the preceding TEST block. They were signaled
which button to push by a small green circle that appeared to the left
or right of the fixation point just after fractal stimulus presentation;
this reproduced their own button-push in the preceding TEST block in
a randomized order. The fractal stimulus and the outcome color
(yellow or purple) had no influence on the subject’s button selection
but simply reproduced the effects of the visual displays in the TEST
trials. Thus aside from the timing of the green circle’s presentation,
the CONTROL block reproduced all of the physical events of the
preceding TEST block and was used to subtract these effects from the
TEST trials. No reward or penalty was given in the CONTROL trial.
The accumulated reward above the figure box in the CONTROL block
remained constant at the value of the preceding TEST trial. As in the
TEST block, one trial lasted 19 or 21 s, with four repetitions per block,
and the TEST and CONTROL blocks were alternated (Fig. 1C). One
session included 12 TEST/CONTROL blocks and lasted 32 min [20 s
(on average) � 4 trials � 2 (TEST � CONTROL) � 12 blocks]).

We conducted three experimental sessions, S1, S2, and S3, in
which the dominant probability was 0.9, 0.8, and 0.7, respectively.
According to the stochastic uncertainty, learning was expected to
become progressively more difficult. The order of these sessions was
counterbalanced across the subjects, and the results were analyzed
together because no marked differences in learning performance or
imaging results were found. At the start of the experiments, the
subjects were told that success or failure depended stochastically on
the fractal stimulus presented and the button pushed, but they were not
provided with any concrete information on stochastic parameters. The
subjects were encouraged to earn as large a monetary reward as
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possible, and it was actually given to them in addition to their basic
compensation (1,500 yen). We prepared five different sets of three
fractal stimuli and changed the configuration of the stimulus set for
every session to exclude any brain activity arising from a fixed set of
figures.

Computational model for estimating SADRP and RPE

A reinforcement learning model was introduced to estimate the
subject’s SADRP and RPE during learning. There is a notable differ-
ence between SADRP and the conventional “reward prediction”
mentioned in previous physiological and imaging studies, in which the
reward prediction was a reward amount predicted solely from a given
sensory cue but unrelated to actions or selection of behaviors. More
precisely, a subject’s SADRP at time t can be represented as a table
Qt(fs, bp) indicating the predicted amount of reward for a button-push
bp (right or left) and a fractal stimulus fs. Because the number of
components is equal to the product of the number of stimuli (3) and
the number of actions (2), in this experimental paradigm, SADRP
consists of six components. Note that the optimal selection of behav-
iors is trivial once the true SADRP table is acquired; at that point, the

button with the larger Q is selected. When the subject receives an
actual reward rt, the RPE amounts to rt –Qt(fs, bp). Then, the model
changes the element of the table by the following rule so as to
decrease the RPE for the next occurrence of the same combination of
stimulus and action

Qt�1�fs,bp� � Qt�fs,bp� � �t
fs�rt � Qt�fs,bp��

This procedure, which only updates the table element correspond-
ing to the subject’s selected action bp and the given fractal
stimulus fs in proportion to the reward prediction error, is known
as the “Q-learning algorithm” (Sutton and Barto 1998). It is used
here to estimate subjects’ SADRP and RPE. Therefore only the
component of SADRP that corresponds to the given stimulus and
the selected action in each trial will be shown, updated, and used
in the subsequent analysis. In the early stage of learning, when
SADRP is inaccurate and RPE has a large value, the change in
SADRP is expected to be large, whereas in the late stage of
learning when SADRP is accurate and RPE is small, the change in
SADRP is expected to be small. Thus SADRP tends to converge to
an asymptotic value.
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FIG. 1. Experimental design. A–C: TEST trial, CONTROL trial, and overall organization of the experiment. A: in each TEST trial, 1 of 3 fractal stimuli (FS)
was presented, and the subject was required to press the left or right button after a beep to obtain a monetary reward. A small green circle appeared showing
which button the subject had pushed. In this example (session 2), the optimal (advantageous) button-push for each FS was set (FS1: left, FS2: right, FS3: left)
to yield a reward of 50 yen (yellow frame presented) or a penalty of �50 yen (purple, data not shown) with a probability of 0.8 and 0.2, respectively. In contrast,
a nonoptimal (disadvantageous) button-push (FS1: right, FS2: left, FS3: right) led to a 50-yen reward or penalty with a probability of 0.2 and 0.8, respectively.
B: in CONTROL, subjects had to reproduce their button-pushes in the preceding TEST block for the same set of fractal stimuli while visually instructed by the
position of the small green circle. Order of stimulus and button-push was randomized. FS and outcome color (yellow or purple) simply reproduced TEST and
was unrelated to the subjects’ selection of button-push. No reward or penalty was given in CONTROL, and the accumulated reward above the figure frame
remained constant at the value of the preceding TEST trial. C: TEST and CONTROL blocks each included 4 trials, and they were interleaved 12 times.
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The learning rate �t
fs controls the amplitude of change and is

determined by a standard recursive least-square procedure (Bertsekas
and Tsitsiklis 1996; Dayan et al. 2000; Young 1984). In the current
situation, �t

fs reduces to an estimation of the inversed variance for the
fractal stimulus fs that has a value of 1 when presented and 0
otherwise; then we derive the following update rule

�t
fs �

�t�1
fs

1 � �t�1
fs

Qualitatively, the learning rate �t
fs decreases as SADRP becomes

reliable. This property of �t
fs is important because SADRP does not

necessarily change much after the completion of learning, even if RPE
occurs because of the stochastic nature of the task. The update
equation indicates that the learning rate sharply decreases below 1,
suggesting that the initial value of �t

fs (i.e., �0
fs) has little effect on the

estimation of SADRP and RPE. We actually examined values of 10,
100, 1,000, 10,000, and 100,000 and confirmed that the resulting
SADRP and RPE were not sensitive to them. Therefore we set a value
of 1,000 throughout the study.

Finally, it was possible to evaluate the model by examining how
often an actual subject’s behaviors and advantageous bp in terms of
Qt(fs, bp) agreed with each other.

MRI acquisition and preprocessing

MRI scanning was conducted with a 1.5-T Marconi scanner. For
each subject, 768 scans of BOLD images (TR 2.5 s, TE 49 ms, flip
angle 80°, FOV 192 mm, resolution 3 � 3 � 5 mm) were acquired
over two sessions. In addition to these experimental trials, each
session contained two preliminary dummy CONTROL trials (16
scans) to allow for T1 equilibration effects. Then, we stopped the MRI
scanner and let subjects out for a 10-min break outside the scanner.
After the break, the same procedure was repeated for another (3rd)
session. High-resolution [T1 (1 � 1 � 1 mm) and T2 (0.75 � 0.75 �
5 mm)] structure images were also acquired for each subject. The data
were analyzed using standard procedures implemented in Statistical
Parametric Mapping (SPM99) (Friston et al. 1995). Before statistical
analysis, we conducted motion correction and nonlinear transforma-
tion into the standard space of the MNI coordinates as implemented in
SPM99. These normalized EPI images were resliced into 2 � 2 �
2-mm voxels and smoothed with an 8-mm full-width half-maximum
isotropic Gaussian kernel.

Computational model–based regression analysis

After preprocessing, we analyzed the data following the standard
procedure of the random effect model implemented in SPM99. Spe-
cifically, we conducted an event-related correlation analysis of fMRI
data with SADRP and RPE. We assumed that brain activities related
to SADRP and RPE occur at the timing of the stimulus presentation
and reward delivery, respectively. The accuracy of this timing as-
sumption is discussed earlier. SADRP and RPE during the CON-
TROL trials were assumed to be 0. This assumption is justified as
follows. First, there was no monetary reward. Second, the combina-
tion of fractal stimuli and button-pushes (left or right) was arbitrary
during control trials. Therefore it was neither necessary nor possible
for subjects to predict the amount of rewards during CONTROL.
Third, the subjects were instructed to push the button passively.

Figure 2 shows how regressors were constructed from SADRP and
RPE. The Q-learning model was used to estimate each subject’s
SADRP and RPE in each trial (Fig. 2A). The ith and jth trials shown
here schematically represent the early and late learning phases, re-
spectively. To model the BOLD signal driven by SADRP and RPE,
these two variables were convolved with a hemodynamic response
function (Fig. 2B, spm_hrf function with TR equal to 2.5). The
waveforms of the two regressors were determined as shown in Fig. 2C

in each trial, based on the assumption that two brain activities started
at the stimulus presentation and at reward feedback. These two
regressors do not overlap within a trial as shown in Fig. 2C, which
helped to make the event-related correlation analysis reliable.

Statistical threshold and illustrations

The statistical threshold was set at P � 0.001, uncorrected for
multiple comparisons, with the additional constraint that at least five
contiguous voxels be included. This uncorrected threshold could be
supported because only the striatum was our region of interest. As for
the conjunction of ASDRP and RPE over the three sessions (S1–S3)
shown in Fig. 9, we simply extracted the voxels with a t value 	3.0
in all three sessions by applying a masking operation. We selected this
method because we could not directly compare statistics derived from
different scanning sessions. We also examined another threshold of
I value 
 3.5, and the results were quite similar to the case of 3.0.
All of the illustrations of statistical maps (i.e., Fig. 6 –10) were
prepared using our in-house software named “multi_color,” which is
freely available to the research community (http://www.cns.atr.jp/
multi_color/).

R E S U L T S

Behavioral results

Figures 3–5 show how the reward acquisition and button-
push behaviors changed during the TEST blocks of the stim-
ulus-action-reward association task for the most successful
subject (Fig. 3) and least successful subject (Fig. 4) in terms of
total monetary reward, and the average for the 20 subjects (Fig.

FIG. 2. Regression analysis with stimulus-action-dependent reward predic-
tion (SADRP) and reward-prediction error (RPE). A: each subject’s SADRP
and RPE in each trial were estimated by the Q-learning algorithm. B: SADRP
and RPE were convolved with a hemodynamic response function to model the
BOLD signal representing SADRP and RPE. C: resulting time-courses of
regressors for SADRP and RPE in the ith and jth trials.
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5). Accumulated reward (AR) increases almost monotonically
in S1–S3 in Fig. 3. In contrast, only S1 exhibits a monotonic
increase in Fig. 4, and the flat and decreasing tendencies found
in S2 and S3 show that learning was demanding for the subject
and that it had not yet been completed within the given number
of trials. The averages of all subjects displayed in Fig. 5 show
that ARs yielded progressively smaller positive slopes in S1,
S2, and S3. Accumulated rewards in the final TEST blocks
were significantly larger than zero (P � 0.0001; t-test) and
ranked in the order S1 	 S2 	 S3 (P � 0.05; t-test). These
observations are consistent with the hypothesis that learning is
progressively more difficult in S1, S2, and S3 in accordance
with their stochastic uncertainties.

From their behavior, we estimated each subject’s SADRP by
the Q-learning model (Sutton and Barto 1998), which is de-
fined as the amount of reward predicted by a subject based on
a given contextual stimulus and an action selected by the
subject. The RPE amounts simply to the difference between
SADRP and an actual reward. SADRP is shown in Figs. 3B,
4B, and 5B. The horizontal lines in Fig. 5B show theoretical
maximum values that are expected for optimal button-push {40
yen [
50 � (0.9 �0.1)], 30 yen [
50 � (0.8 � 0.2)], and 20
yen [
50 � (0.7 � 0.3)] for S1–S3, respectively}. In the
easiest task (S1), SADRP increased and approached the theo-
retical maximum (40 yen) within 20 trials for all subjects. In
more stochastic tasks (S2 and S3), the increase in SADRP

became progressively slower than in S1, and some of the
subjects failed to achieve the maximum SADRP even in the
final TEST trial. None of the estimated SADRPs of any of the
subjects showed a simple monotonically increasing tendency

FIG. 3. Behavioral results of learning for the most successful subject in
terms of total reward. A–C: time-courses of accumulated reward (AR),
SADRP, and RPE. D and F: chronological plots of actual button-pushes by the
subjects and corresponding model predictions for each fractal stimulus (FS1–
3), respectively, aligned with the subjects’ actual rewards (E). In D and F, light
grey and dark grey bars represent a left and right button-push, respectively,
whereas in E, white and black bars represent a reward and penalty, respec-
tively. S1, S2, and S3 represent experimental sessions with a dominant
probability of 0.9, 0.8, and 0.7, respectively.

FIG. 4. Behavioral results of learning for the least successful subject in
terms of total reward. All subplots follow format of Fig. 3.

FIG. 5. Behavioral results of learning for the average and SD of all 20
subjects. Corresponding to Figs. 3 and 4, A–C show time-courses of AR,
SADRP, and RPE averaged over 20 subjects. D and E: proportion of nonop-
timal button-pushes by subjects and change in SADRP of the model, respec-
tively.
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because of the stochasticity of the task. Furthermore, it is even
difficult to find general increasing tendency in the more sto-
chastic S2 and S3 tasks among the poorer subjects (e.g., Fig.
4). Considering this nonmonotonic nature of SADRP, the
subsequent regression analysis of fMRI data with SADRP did
not simply capture the artifact correlated with an arbitrary
increasing function in time.

Corresponding to SADRP, the absolute values for RPE
shown in Figs. 3C, 4C, and 5C quickly decreased to close to 5
yen within 20 trials in S1, but decreased only slowly in S2 and
S3. The absolute value was taken because BOLD signal change
in the striatum is assumed to represent the energy consumption
that arises from the synaptic plasticity change triggered by the
RPE. The spiked increase of RPE found in the final stage of S1
(see Figs. 3C, 4C, and 5C) was induced because an unexpected
penalty (�50 yen) with low probability occurred, whereas the
majority of subjects predicted a 40-yen reward (�50 � 40 

�90 yen RPE). This is also evident in the average (Fig. 5),
because most subjects who had already learned to predict a
positive reward received an unexpected penalty at this point
because of our use of the same random-number sequence.
Again, because of the stochasticity of the task, the RPEs did
not exhibit a monotonically decreasing tendency in time. It is
also difficult to find generally decreasing patterns in the most
stochastic S3 tasks among the poorer subjects (e.g., Fig. 4).
Thus regression with RPE again did not simply capture brain
activity that was correlated with an arbitrary decreasing func-
tion in time.

To evaluate how well the simple Q-learning model predicted
each subject’s behaviors, Figs. 4D and 5D also compare the
actual button-pushes, which subjects selected for each of the
fractal stimuli during the TEST trials, and the corresponding
behaviors (Figs. 4F and 5F) predicted by the model. These
subject and model behaviors were aligned with the actual
reward (Figs. 4E and 5E), in which a reward and a penalty are
labeled in white and black, respectively. In Figs. 4, D and F,
and 5, D and F, FS1–3 are represented from top to bottom, with
the abscissa showing the number of trials in the temporal order
of presentation of the three stimuli. Light grey and dark grey
vertical bars represent left and right button-pushes, respec-
tively. In the model, we assumed that each subject’s button-
push was selected according to which button-push, left or right,
was more advantageous in terms of the SADRP table (deter-
ministic selection: the button with the larger Q is always
selected).

The model’s predictions showed generally good agreement
with subjects’ actual behaviors. In the most successful subject
(Fig. 3, D and F), the behaviors and predictions were different
only in the first few trials, with the discrepancy seeming to
arise from a difference in initial strategies, in which the model
set the elements of SADRP at 0, thus setting button selection
probabilities for left and right equally at 0.5. For the least
successful subject (Fig. 4, D and F), the model’s predictions
and actual behaviors coincided very well in the easiest task
(S1), but the degree of agreement decreased progressively in
S2 and S3. This subject’s behaviors changed more frequently
than the model’s prediction. A possible reason for the discrep-
ancy is that the subject was naı̈ve to an unfortunate penalty (see
also Fig. 4E) because of stochastic uncertainty and behaved in
a shortsighted and non–self-confident way without considering
the long-term statistics of reward and penalty. This suggests

that the subject was more explorative than the behavior ex-
pected from using the Q-learning algorithm. Averaged over all
20 subjects, the mean precision of the model’s prediction was
0.92 � 0.21 (SD), 0.85 � 0.32, and 0.73 � 0.42 for S1, S2, and
S3, respectively. These values indicate that this parsimonious
model simulated the subjects’ behaviors reasonably well.

Both the simplicity of the model and its ability to predict
behaviors motivated the use of computational internal repre-
sentations such as SADRP and RPE in the subsequent fMRI
analysis. In addition, Fig. 5, D and E, compare the proportion
of nonoptimal button-pushes and the change in SADRP aver-
aged over all subjects. This ratio was determined from the
subject’s behaviors alone. It decreased most rapidly in S1 and
progressively more slowly in S2 and S3, reflecting the increas-
ing stochastic uncertainty and resulting greater difficulty. The
later stage of the proportion of nonoptimal button-pushes
showed smaller fluctuations than later-stage RPE, although the
fluctuations decreased in both with the number of trials. The
time-course of the change in SADRP showed a pattern of
decay closer to that of the proportion of nonoptimal button-
pushes than that of RPE, which continuously fluctuated until
the end of the learning trials because of the stochastic uncer-
tainty of the task. This contrast shows that the change in
SADRP better explains each subject’s behavioral learning (the
proportion of nonoptimal button-pushes) than RPE does, sug-
gesting that SADRP better reflects the internal representations
responsible for behavioral learning. In summary, all of the
observations described above indicate that the learning strategy
of the human subjects is reasonably comparable with a very
simple computational model based on SADRP and RPE.

fMRI results

We carried out an event-related regression analysis of the
fMRI data in the striatum with SADRP and RPE. All analyses
were conducted with the random-effect model implemented in
SPM99 (Friston et al. 1995), and the statistical threshold was
set at P � 0.001, uncorrected for multiple comparisons, with
the additional constraint that at least five contiguous voxels be
included. We assumed that the processing related to SADRP
and that to RPE are two temporally distinct events triggered by
the presentation of the fractal stimulus and by reward delivery,
respectively. This assumption is reasonable considering the
instruction that subjects should decide on a button-push for a
FS at its onset and the fact that there was an interval of 	10 s
between FS presentation and reward delivery (see also Figs. 1
and 2). In other words, the hemodynamic response for SADRP
was assumed to begin to rise on fractal presentation and to
reach a peak magnitude proportional to SADRP a few seconds
later. Similarly, the hemodynamic response for RPE was as-
sumed to begin to rise on reward delivery and to reach a peak
magnitude proportional to RPE. The correlation analyses for
the two variables in different sessions (S1–S3) were conducted
separately because the scanner was stopped and the subjects
went for a 10-min break between their second and third
sessions.

Figure 6 shows the correlated activity in the striatum (con-
sisting of the putamen and caudate nucleus) with SADRP and
RPE for the simplest task S1 (Fig. 6, A and B; identical data
with a right and left view). Here, the color map associated with
each voxel represents its T-values of SPM99 for SADRP and
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RPE in pink and green, respectively. The MNI coordinates of
the peak activity for SADRP were [�16,�2,0], located at the
boundary between the anterior and intermediate putamen in the
vicinity of the anterior commissure (Talairach and Tournoux
1998). In contrast, the peak voxel correlated with RPE was at
[�8,�4,6], located in the caudate nucleus. A strong correlation
with RPE was also found in the ventral striatum, where the
MNI coordinates of the peak voxel were [�10,�2,�2]. Both
SADRP and RPE activities were bilateral, although T-values
for the left-side activity were larger than those for the right-side
activity.

For S2 and S3, the striatal activity correlated with SADRP
(red and orange, respectively) and RPE (cyan and magenta,
respectively) are shown in Figs. 7 and 8 in the same format as
in Fig. 6. The peak activity correlated with SADRP and RPE
were again found at the boundary between the anterior and
intermediate putamen ([�20,�6,4] and [�26,0,4] for S2 and
S3, respectively) and in the caudate nucleus ([�12,6,10] and
[�12,0,14] for S2 and S3, respectively). These activities were
bilateral, and T-values for the left-side activity were slightly
larger than those for the right-side activity. The correlation
with RPE was also found in the ventral striatum ([�10,0,�4]
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FIG. 6. Activity in the striatum correlated with SADRP and RPE for S1. Each voxel (1 � 1 � 1 mm) is associated with T-values for SADRP (pink) and RPE
(green), which are represented as the brightness of the colors as shown in color bars. These activity maps were constructed by reslicing the original activity map
(2 � 2 � 2 mm). Overlapping voxel activated in the 2 analyses is represented by a mosaic comprising 2 corresponding colors. Range of MNI coordinates in
the illustration is ([�35, 35], [�35, 25], [�8, 24]), which includes the entire dorsal striatum (putamen and caudate nucleus) and part of the ventral striatum
(ventral putamen; Talairach and Tournoux 1998). Peak T-values for SADRP activity in the left and right putamen were 6.42 and 5.99; for RPE activity in the
left and right caudate nucleus were 9.82 and 5.54, and for the left and right ventral striatum activity were 5.45 and 5.13, respectively.
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FIG. 7. Activity in the dorsal striatum correlated with SADRP (red) and RPE (cyan) for S2. Figure is in the same format as Fig. 6. Peak T-values for SADRP
activity in the left and right putamen were 6.67 and 5.99, for RPE activity in the left and right caudate nucleus were 7.89 and 6.81, and for the left and right
ventral striatum activity were 9.31 and 9.29, respectively.

954 M. HARUNO AND M. KAWATO

J Neurophysiol • VOL 95 • FEBRUARY 2006 • www.jn.org

 on January 23, 2006 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


and ([�10,0,�4] were the peaks for S2 and S3, respectively).
Overall, the activities for S2 and S3 showed the same tenden-
cies as that for S1. The only notable difference was that the
number of correlated voxels with SADRP and RPE became
smaller and larger than S1, respectively.

The most notable observation from Figs. 6–8 is that the
SADRP activity for S1 to S3 was mainly confined within the
putamen, whereas the RPE activity was mainly distributed
within the caudate nucleus and ventral striatum. These nearly
separate distributions of SADRP and RPE activities remained
robustly consistent regardless of the differences in task diffi-
culty from S1 to S3. Second, the number of voxels correlated
with SADRP and RPE strongly depended on task difficulty in
exactly the opposite manner: SADRP activity tended to be
more prominent in the less stochastic task (S1) than in the more
stochastic tasks (S2 and S3), whereas RPE activity both in the
caudate nucleus and ventral striatum tended to exhibit stronger
correlations in the more stochastic tasks (S2 and S3). More
specifically, the number of voxels correlated with SADRP in
S1, S2, and S3 was 683, 87, and 101, respectively, and the
number correlated with RPE was 399, 864, and 565. Only the
SADRP activity for S1 significantly overlapped RPE activity
(SADRP had only 5 overlapping voxels with RPE for both S2
and S3). The number of overlapping voxels of SADRP for S1
with RPE for S1, S2, and S3 was 40, 180, and 107, respec-
tively.

It is also important to know whether there is a common
activation for SADRP and RPE across different task difficul-
ties. To address this, we conducted a conjunction analysis (see
METHODS) of SADRP and RPE over three sessions (S1–S3).
Figure 9 overlays the results on a normalized brain image,
where voxels correlated with SADRP in all sessions are shown
in pink, whereas voxels correlated with RPE in all sessions are
in green. The SADRP correlation was confined to the putamen
in the vicinity of the anterior commissure. In contrast, the RPE
correlation was localized in the caudate nucleus, again in the
vicinity of the anterior commissure. Importantly, there was no
overlap of correlation between SADRP and RPE.

To pinpoint the anatomical localizations of the correlation
with SADRP and RPE and look into temporal characteristics of
these brain activities, we examined a single subject’s data and
BOLD signal time-courses in early and late learning trials.
Figure 10A shows SADRP correlation (red) and RPE correla-
tion (cyan) while a typical subject was engaged in S2, which
are overlaid on the subject’s normalized structural image.
Event-related BOLD signals averaged over the first and last 24
trials are also plotted at the peaks within the putamen (Fig.
10B) and the caudate nucleus (Fig. 10C). Consistent with the
conjunction analysis, the individual subject analysis also shows
that the correlations with SADRP and RPE were confined to
the putamen and caudate nucleus, respectively. Event-related
plots show that the BOLD signal in the putamen increased at
fractal stimulus onset as learning proceeded, whereas the
BOLD signal in the caudate nucleus decreased at the reward
feedback timing. Thus this spatiotemporal feature of the BOLD
signal is consistent with our hypothesis that brain activities in
the putamen and caudate nucleus are mainly driven by SADRP
and RPE, respectively.

Finally, the validity of the model-based correlation analysis
depends on whether the activity in voxels indeed reflects the
changes in SADRP or RPE or whether it comes from some
other variables that are in turn correlated with either of these
variables. To verify the reliability of this analysis, we carried
out two additional multivariate regression analyses: one with
both SADRP and AR, which basically form an increasing
function, and the other with both RPE and change in SADRP
(CSADRP), which basically form a decreasing function. Cor-
relation with AR was found in the insula and inferior temporal
cortex, whereas correlation with CSADRP was found only in
the medial prefrontal cortices (P � 0.001; uncorrected for
multiple comparisons). The correlation in the striatum with
SADRP and RPE did not change by this inclusion of AR and
CSADRP. Therefore within the context of this study, SADRP
and RPE are more representative of activities in the putamen
and caudate nucleus than AR and CSADRP, respectively.
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FIG. 8. Activity in the dorsal striatum correlated with SADRP (orange) and RPE (magenta) for S3. Figure is in the same format as Fig. 6. Peak T-values for
SADRP activity in the left and right putamen were 4.95 and 4.50, for RPE activity in the left and right caudate nucleus were 9.19 and 7.40, and for the left and
right ventral striatum activity were 4.95 and 5.15, respectively.
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Other brain areas

Although the specific focus of this study was the striatum
because numerous previous studies had suggested its central
role in learning stimulus-action-reward associations, the activ-
ities of other brain regions were also found in the event-related
correlations with SADRP and RPE (statistical threshold was
set at P � 0.001, uncorrected for multiple comparisons, with
the additional constraint that at least 10 contiguous voxels be
included). Consistent correlations with SADRP were found for
S1–3 in the bilateral superior parietal, dorsolateral prefrontal,
dorsal premotor and occipital cortices, insula, thalamus, cere-
bellum, anterior cingulate cortex, supplementary motor area,
and right superior temporal sulcus, whereas consistent RPE
correlations for S1–3 were found in the bilateral superior
parietal and occipital cortices, insula, hippocampus, anterior
cingulate cortex, and right orbitofrontal, dorsolateral prefron-
tal, and dorsal premotor cortices. Unlike the putamen and
caudate nucleus, none of the other brain regions correlated with
both SADRP and RPE (i.e., the superior parietal, dorsolateral
prefrontal, dorsal premotor and anterior cingulate cortices, and
insula) exhibited any systematic differences in spatial activa-
tion pattern between SADRP and RPE, as seen by the nearly
separate distributions throughout S1–3.

D I S C U S S I O N

We conducted an event-related fMRI study with monetary
reward to investigate the involvement of the putamen and

caudate nucleus during stimulus-action-reward association
learning. The results showed that activity in the putamen is
mainly correlated with SADRP at the cue presentation,
whereas activity in the caudate nucleus is mostly correlated
with RPE at the reward feedback. This difference in the
distribution of the correlations in the dorsal striatum suggests
that the putamen acquires stimulus-action-dependent reward
prediction dominantly, while the caudate nucleus, as well as
the ventral striatum, is mainly engaged in the learning process
controlled by comparing actual and predicted rewards. Al-
though our previous work (Haruno et al. 2004) also dealt with
fMRI examination of modular structures in the brain related to
stochastic decision tasks, the significant new findings on the
functional difference in the dorsal striatum, as well as the
event-related task design and computational model–based
analysis, are entirely new features of this study.

SADRP is critical for selecting an optimal behavior because
an action as well as a contextual stimulus should be considered
in predicting the amount of reward. The relevance of SADRP
as the subject’s internal representation in this study was indi-
cated by the following observations. First, as shown in Figs. 3
and 4, the learning process simulated by the model based on
SADRP (and consequently RPE) coincided with each subject’s
learning behavior. Second, the nearly mirror-image relation-
ships between Fig. 5, B and D, indicate that SADRP explains
behavioral learning better than does RPE. Third, the RPE
calculated from the SADRP reflects the well-established find-
ing that activity in the ventral striatum is strongly correlated

Z=-2 Z=2 Z=6

Z=10 Z=14

SADRP

RPE

S1 & S2 & S3

Y=0

Y=0

FIG. 9. Conjunction of activations for SADRP (pink) and RPE (green) across S1–S3 overlaid on the normalized structural image of a subject. Y and Z
represent the MNI coordinates of the activations.
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with the TD error (Berns et al. 2001; Breiter et al. 2001;
McClure et al. 2003; O’Doherty et al. 2003; Pagnoni et al.
2002). These observations together, with the fact that SADRP-
correlated activity was bilateral (all subjects pushed a button
with their right hand) and that brain activity purely related to
the button-push was eliminated by subtracting the CONTROL
activity, suggest that the SADRP correlated activity in the
putamen represents the learning of stimulus-action-reward as-
sociations.

These correlations between putamen activity and SADRP
and between caudate nucleus activity and RPE are consistent
with their respective anatomical connections with the cortex:
the anterior-intermediate putamen receives projections from
the sensorimotor cortices, including the dorsal and ventral
premotor cortices, the supplementary motor area, and the
primary motor cortex (Alexander et al. 1990; Gerardin et al.
2003; Parthsarathy et al. 1992; Selemon and Goldman-Rakic
1985; Takada et al. 1998), whereas the caudate nucleus re-
ceives its inputs from frontal association areas, such as the
dorsolateral prefrontal, orbitofrontal, and cingulate cortices
(Alexander et al. 1990). Thus the medial-intermediate and
anterior-intermediate putamen in the vicinity of the anterior
commissure, which exhibit peak correlation with SADRP, are
suitable locations for encoding stimulus-action-reward associ-
ations. This assumption is also supported by the fact that these

are not only reward-related areas (Cromwell and Schultz 2003)
but also motor-related areas, as a result of the projections from
both the premotor cortex and the supplementary motor area.
This general area of the putamen might be related to the
integration of information on the expectation of reward with
processes that mediate the actions leading to the reward.
Similarly, the anatomical connections of the caudate nucleus
suggest that it is appropriately located for dealing with the
RPE. There are also some indications that reward and penalty
are encoded by different neural substrates (Daw et al. 2002).
Therefore we carried out separate analyses for positive and
negative rewards and found that activity in the amygdala and
hippocampus was correlated with the negative reward predic-
tion error. In contrast, the brain regions activated for positive
rewards were the same as those indicated by the current unified
analysis, and the statistical significance became slightly weaker.

The view that the anterior-intermediate putamen acquires the
stimulus-action-reward association is compatible with the re-
sults of recent electrophysiological studies with monkeys and
the results of human imaging studies. After the completion of
learning, a higher percentage of tonically active neurons
(TANs) in the putamen respond to “go” signals for an action
than in the caudate nucleus, especially when a reward is
expected from the action (Yamada et al. 2004). Similarly, more
prevalent activations preceding the trigger stimulus for an
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FIG. 10. Anatomical localization and time-course of brain activity for SADRP and RPE. A: correlated brain activity of a typical subject with SADRP (red)
and RPE (cyan) for S2. Color bar is the same as in Fig. 7. B: event-related plot of the peak voxel in the putamen (�20,16,�2) at fractal onset. C: event-related
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957STIMULUS-ACTION-REWARD ASSOCIATION IN THE PUTAMEN

J Neurophysiol • VOL 95 • FEBRUARY 2006 • www.jn.org

 on January 23, 2006 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


action were found in projection neurons of the putamen (Crom-
well and Schultz 2003). In the context of sequential motor
learning, the posterior putamen was found to be more active
when a monkey was conducting an already-learned motor
sequence (Hikosaka et al. 1999, 2002; Miyachi et al. 1997,
2002) than when learning a new sequence. Similarly, a human
PET study of sequential finger movement learning reported
that the posterior putamen was activated when the sequential
movements were well learned, whereas the intermediate puta-
men and caudate nucleus were activated during intermediate
learning and new learning, respectively (Jeuptner and Weiller
1998; Jeuptner et al. 1997). Although, because of its limited
temporal resolution, the PET study could not be focused on the
timing of stimulus presentation, it is possible that the increase
in the PET signal in the intermediate putamen represents the
stimulus-action-reward association. The characteristics of fMRI
that mainly reflect averaged synaptic inputs (Logothetis et al.
2001) (from motor-related areas in this experiment) may ex-
plain why our study highlighted the role of the putamen in
stimulus-action-reward association more than previous electro-
physiological studies. To identify a detailed computational
mechanism executed in the putamen and caudate nucleus, it is
essential to determine whether the dopamine system as well as
the thalamostriatal loop (Smith et al. 2004) acts on these two
structures equally or differently by conducting a PET (Zald et
al. 2004) or electrophysiological study during stimulus-action-
reward association learning.

This study focused on the difference between the putamen
and caudate nucleus, and it is consistent with previous imaging
studies based on TD models (Berns et al. 2001; McClure et al.
2003; O’Doherty et al. 2003; Pagnoni et al. 2002). Correlation
with TD error was reported in the caudate nucleus in an
instrumental conditioning task in addition to the ventral stria-
tum, which was also activated in a classical conditioning task.
This study revealed the correlation of activity with RPE in both
the caudate nucleus and ventral striatum during stimulus-
action-reward association learning (instrumental conditioning).
In comparison with these studies, the main contribution of this
study was to show the different involvement of the putamen
and caudate nucleus during stimulus-action-reward association
learning. Our results did show that a small number of voxels
(5.8% of total correlated with SADRP only in S1) were
correlated with both SADRP and RPE. These voxels exhibited
BOLD signal time-courses that are analogous to the dopamine
neurons of Schultz. That is, at the beginning of learning, the
BOLD signal increase was marked at the timing of reward
delivery, while in the later phase of learning, the BOLD signal
increase was large at the visual stimulus timing and also
remained at the reward delivery timing with a smaller ampli-
tude. Thus one can argue that this small number of voxels
exhibit similar time courses as the “TD error” encoded by
dopamine neurons. However, we also emphasize that the ma-
jority of activated voxels were correlated with either SADRP at
the timing of visual stimulus or RPE at the timing of reward
delivery. This might be attributed to the fact that our task does
not contain the feature of “temporal credit assignment,” or the
fMRI paradigm may not provide a high enough spatiotemporal
resolution to examine this issue fully.

Although this study focused specifically on the contribution
of the dorsal striatum during stimulus-action-reward associa-
tion learning, other brain regions were also activated (see

RESULTS). These regions activated by SADRP were consistent
with the regions identified in previous human and monkey
studies, i.e., the anterior cingulate cortex (Williams et al.
2004), prefrontal cortex (Barraclough et al. 2004; Matsumoto
et al. 2003), and parietal cortex (Sugrue et al. 2004), suggesting
that the dorsal striatum is a part of a large brain network
involved in stimulus-action-reward association learning and
subsequent decision making.
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