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Theories of motor control postulate that the brain uses internal
models of the body to control movements accurately. Internal
models are neural representations of how, for instance, the arm
would respond to a neural command, given its current position
and velocity1±6. Previous studies have shown that the cerebellar
cortex can acquire internal models through motor learning7±11.
Because the human cerebellum is involved in higher cognitive
function12±15 as well as in motor control, we propose a coherent
computational theory in which the phylogenetically newer part of
the cerebellum similarly acquires internal models of objects in the
external world. While human subjects learned to use a new tool (a
computer mouse with a novel rotational transformation), cere-

³ Present addresses: Massachusetts General Hospital NMR Center, 149, 13th Street, Charlestown,
Massachusetts 02129, USA (Y.S.); Kernspintomographie, Max-Planck-Institut fur Psychiatrie, Kraepe-

linstrasse 10, 80804 Muenchen, Germany (B.P.).

bellar activity was measured by functional magnetic resonance
imaging. As predicted by our theory, two types of activity were
observed. One was spread over wide areas of the cerebellum and
was precisely proportional to the error signal that guides the
acquisition of internal models during learning. The other was
con®ned to the area near the posterior superior ®ssure and
remained even after learning, when the error levels had been
equalized, thus probably re¯ecting an acquired internal model of
the new tool.

Most neuroimaging studies have found that the regional blood
¯ow in the human cerebellum increases signi®cantly at the begin-
ning of learning for a new motor or cognitive task and decreases as
the learning proceeds16±19. These results are often interpreted as
meaning that the cerebellum is involved only in the early phase of
learning and is not a memory site, that is, it does not store internal
models. Here we present a different interpretation (see also ref. 15)
based on our computational theory and experimental results.

Previous cerebellar learning theories20±22 make no speci®c pre-
dictions about the activity of internal models (see Supplementary
Information for details). We have proposed that multiple internal
models exist and that they compete to learn new environments and
tools23. During the learning, all of these multiple internal models
receive a copy of the error signal and only one or a few learn the new
transformation, thereby reducing the error signal and localizing the
new activity to a distinct region of the cerebellum. The two types of
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(red curve) and that re¯ecting the acquired internal model (cyan curve)).
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cerebellar activity representing the error signals and the internal
model are predicted to occur in speci®c spatio-temporal patterns
(Fig. 1). Large error signals are fed into broad regions for all possible
internal model candidates at the initial learning stage (red and
orange in Fig. 1b). Because the subject's performance improves and
the error signals decrease with learning, activity re¯ecting the error
signals also decreases with learning (Fig. 1a). This prediction agrees
with previous imaging data. However, signals representing the
acquired internal model must increase (cyan curve in Fig. 1c) and
remain even at the late stages of learning only in the limited region
(orange in Fig. 1b). This region contains a group of the most
accurate internal models. Even in this region, total activity is
expected to decrease (orange curve in Fig. 1c) because the observed
activity is the sum of the error signal (broken red curve) and the
internal model (cyan curve). However, signi®cant activity must
remain even after the learning is complete. In our interpretation, the
activity re¯ecting the learned model is smeared by the strong
activity re¯ecting the error signal and, therefore, was not detected
in previous imaging studies. In our present study, however, we
found internal model activity by equalizing the errors under the
baseline condition to those under the test condition. Furthermore,
the time course of the internal-model activity (cyan curve in Fig. 1c)
was estimated by subtracting the error signal activity (red curve)
from the total activity (orange curve).

The task for the subjects was to manipulate a computer mouse so
that the corresponding cursor followed a randomly moving target
on a screen (Fig. 2a; a tracking task). Seven subjects performed the
task for eleven sessions (training sessions). We used functional
magnetic resonance imaging (fMRI) to scan the cerebellum in the
odd-numbered sessions. Each session lasted 9 min and 23 s and
comprised eight alternating blocks of test and baseline periods.
During the test periods, the cursor appeared in a position rotated
1208 around the centre of the screen to necessitate subject learning
(novel mouse); during the baseline periods, it was not rotated
(ordinary mouse). In the ®rst session (Fig. 2b), large regions near
the posterior superior ®ssure in the lateral cerebellum were sig-
ni®cantly more active during the test periods than the baseline
periods (correlation coef®cient �CC� . 0:3); in the last session
(Fig. 2c), only restricted subregions were activated. We con®rmed
that this activity cannot be attributed to larger hand movements
(Fig. 2d) or larger eye movements in the test than in the baseline
periods by showing that hand-movement or eye-movement activity
is different from the activity shown in Fig. 2b and c (see also
Supplementary Information).
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The subjects' performances were measured by tracking errors (the
distance between the cursor and the target; see Methods). The errors
in the test periods decreased signi®cantly as the number of sessions
increased, whereas the errors in the baseline periods were constant
(upper panel in Fig. 3a). A repeated-measures analysis of variance
(ANOVA) on the errors indicated a signi®cant effect of the sessions
in the test periods (F�10; 60� � 10:60, P , 0:001) but no signi®cant
effect in the baseline periods �F�10; 60� � 0:67�. Activation maps
(P , 0:05, corrected for multiple comparisons) derived from data
across all subjects (Fig. 3a) indicated that the activity in the lateral
cerebellum became smaller as learning progressed (see Methods).

The learning during the test periods was suf®cient for there to be
no signi®cant difference in the tracking error between any pairs of
the last three sessions according to the post hoc test (at P , 0:001
level by Tukey's honestly signi®cant difference method). Thus, the
cerebellar activation observed in the late stage of learning should
include the activity of the acquired internal model. However, we
cannot conclude that the activation solely re¯ects the internal
model because the test error was close to, but signi®cantly larger

than, the baseline error (for example, F�1; 6� � 28:52, P , 0:005 on
the error in the last training session across all subjects). That is, the
activation may partly re¯ect error signals.

To evaluate this possibility, all of the subjects underwent an
`error-equalized' experiment: the target velocity in the baseline
periods was increased so that the baseline error was equal to the
test error. Here, we used the linear relationship between error and
target velocity (see Methods). As result, there was no signi®cant
difference between the test and the baseline errors (Fig. 3b, top).
However, regions near the posterior superior ®ssure were signi®-
cantly more active during the test periods than during the baseline
periods (Fig. 3b, bottom). This activity cannot be related to
the tracking error. Moreover, the amount of mouse movement
(measured by the cursor trajectory length) and the target velocity
in the baseline periods were signi®cantly larger than those in the
test periods (F�1; 6� � 38:16, P , 0:001, on average 2.38-fold, and
F�1; 6� � 156:63, P , 0:001, on average 2.71-fold, respectively). All
of the subjects reported that more effort and attention were needed
in the baseline periods than in the test periods. Thus, the signi®cant
activity increase in the test period cannot be attributed to the
mouse/hand movements, the visual target velocity, attention or
effort. The most plausible explanation is that the remaining activity
in Fig. 3b re¯ects the acquired internal models, whereas the decrease
in activity as learning progresses (Fig. 3a) may largely re¯ect the
error signals.

To strengthen the above conclusion quantitatively, we examined
the time courses of gross signal intensity during all sessions averaged
over two regions of interest. First, the error-related region (red and
orange in Fig. 4b) was de®ned as voxels whose signal intensity
during all the training sessions was signi®cantly and positively
correlated with the tracking error (that is, the estimated regression
coef®cient was signi®cantly larger than zero, t�5276� . 2:33,
P , 0:05 corrected). Second, the internal-model-related region
(blue and orange in Fig. 4b) was de®ned as voxels whose signal
intensity during the error-equalized session was signi®cantly and
positively correlated with the explanatory variable which takes 1 in
the test period scans and 0 in the baseline period scans, and thus
represents internal-model activity (t�874� . 2:33, P , 0:05 cor-
rected). Orange voxels were correlated with both the tracking
error and the internal model activity. The error-related region is
widely spread over the lateral cerebellum, whereas the internal
model seems to be acquired only in the restricted subregions.

The relative activity in the red and orange regions (per cent of
mean signal increase from the baseline periods, all subjects aver-
aged) decreased as the session number increased (red curve in
Fig. 4a) and was highly correlated with the tracking error (per cent
of increase from the baseline) indicated by the black curve
(r2 � 0:82 for all sessions, F�1; 5� � 22:87, P , 0:005). In contrast,
the activity in the blue and orange regions did not markedly
decrease (orange curve in Fig. 4c), and its correlation with the
error was low (r2 � 0:25, F�1; 5� � 1:68). The signal increase in the
blue and orange regions was signi®cantly larger than that in the red
and orange regions (F�1; 6� � 7:38, P , 0:05). These data indicate
that the activity in the blue and orange regions may include
components that cannot be explained solely by the error. The
cyan curve in Fig. 4c shows the subtraction of the red curve from
the orange curve, and represents the internal model activity accord-
ing to our theory. This activity increased at the initial phase of
learning and remained high even in the late learning stage where the
error was equalized (Fig. 4c, right).

The acquired internal models in these experiments are expected
to represent the altered relationship between the cursor movement
and the mouse movement (forward and/or inverse kinematics
models of the novel tool). We believe that these internal models
were stored in different regions from those for an ordinary mouse,
as no signi®cant activity was observed near the posterior superior
®ssure when the subjects used an ordinary mouse in the test periods
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exponential function ®tted to the circles. b, Activity in the red and orange regions was

signi®cantly (P , 0:05) correlated with the tracking error in the training sessions. Activity
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and solid curve indicate the tracking error increase (as in a). The red broken curve is a

duplication of the red curve in a.
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and pursued the moving target with the eyes but without hand/
mouse movements in the baseline periods (see Fig. 2d and Supple-
mentary Information). According to an electrophysiological study
in monkeys24, regions near this ®ssure receive parallel ®bre inputs
from the premotor and parietal association cortex, and are thus
suitable to represent kinematic models of tools. The bilateral
activity (see ref. 25 for related bilateral activity) may indicate that
activated regions acquire internal models for cognitive function
independent of the ipsilateral correspondence between the motor
apparatus and the cerebellum. Whereas previous neurophysiologi-
cal experiments indicated that internal models for the motor
apparatus are present in phylogenetically older parts of the cere-
bellum (such as the ventral para¯occulus, vermis and intermediate
parts)8±11, internal models of objects and tools in the external world
seem to reside in newer parts. We further speculate that the
cerebellum assists information processing in cerebral areas by
providing general internal models of extended controlled objects
in the external world such as concepts, symbols and languages. M

Methods
Task

The subjects moved a computer mouse (PocketEgg, Elecom) using the right hand while
lying in an MRI scanner. Head movements were restrained by a bite bar. They used a tilted
mirror to view a rear-projection screen outside the scanner. A colour projector (VPH-
1272OJ LCD; Sony) controlled by a computer (PC-9821 AP2; NEC) displayed the target
and the cursor on the screen. During the tracking task, a small white square target was
presented on a dark background. The x and y components of the target path were each
sums of sinusoids whose amplitude and frequency were pseudorandomly determined. The
subjects moved a small cross-hair cursor on the screen with the mouse. The cursor
position was sampled at 60 Hz. The distance between the cursor and the target at each
sampling point was accumulated over 4.4 s (tracking error).

Subjects

Ten neurologically normal subjects (20±34 years of age; ®ve females and ®ve males)
participated in the experiments. Each participant gave informed written consent. Seven of
the subjects (®ve right-handed and two left-handed26) underwent the training sessions and
the error-equalized experiment. The other three subjects (two right-handed and one left-
handed) underwent the training sessions and control experiments. In the control
experiments, we con®rmed that the activity observed in the above seven subjects could not
be attributed to differences in hand or eye movements (see Fig. 2d and Supplementary
Information).

MRI acquisition

A 1.5-T MRI scanner (Magnetom Vision; Siemens) was used to obtain blood oxygen level-
dependent contrast functional images. Images weighted with the apparent transverse
relaxation time (T*2) were obtained with an echo-planar imaging sequence (repetition time
(TR) 4.4 s, echo time (TE) 66 ms, ¯ip angle (FA 908, ®eld of view (FoV)
240 mm 3 240 mm, matrix size 128 3 128). We selected ten axial slices (thickness 7 mm,
slice gap 0.21 mm) encompassing the cerebellum. We scanned 128 functional images for
each slice during one session. Anatomical images for these slices were obtained with a T1

weighted sequence (TR 350 ms, TE 6 ms, FA 908, FoV 240 mm 3 240 mm, matrix size
256 3 256).

MRI analysis

Motion artefacts in all functional images were removed by using Automated Image
Registration (AIR) version 3.0 (ref. 27). We used two approaches to analyse the functional
images: a correlation analysis on a pixel-by-pixel basis28 and an analysis based on the
general linear model as implemented in SPM99b (Wellcome Department of Cognitive
Neurology). Details of the correlation analysis have been reported in ref. 29. To analyse
group data, functional images of each subject's cerebellum were stereotactically trans-
formed to a standard template in SPM, and were smoothed with a gaussian kernel 4 mm
full width at half maximum (FWHM). In the activation analyses shown in Fig. 3,
condition-speci®c effects were estimated with the linear model with a boxcar wave form.
Areas of signi®cant change in brain activity were speci®ed by linear contrasts of the
condition-speci®c effects and determined using the t-statistics (SPM{t}). Results were
thresholded at t-value 2.33. In assessing the statistical signi®cance of each cluster, we
corrected for multiple comparisons based on random gaussian ®eld theory in terms of
spatial extent and/or peak height (P , 0:05). Voxel time series were temporally smoothed
with a gaussian ®lter (FWHM of 4 s). We used the effective degree of freedom adjusted for
analysis of fMRI time-series30. In the activation analyses shown in Fig. 4b, the explanatory
variable of main interest was either the tracking error or the internal model activity.

Equalization of the tracking error according to the relationship between the

error and the target velocity

The subjects performed the tracking task under various target velocities for about 15 min.
The cursor position was not rotated during this task. The averaged target velocity

(21:308 s 2 1) used in the training sessions was multiplied by a value ranging from 1.0 to 5.0
at intervals of 0.2. Therefore, the target moved at 21 different averaged velocities in
random order. Then, the relationship was estimated linearly by the least-squares method.
The effect of the velocity on the error was signi®cant (r2 . 0:70, F�1; 19� . 45:27,
P , 0:0001) for each subject. When the cerebellar activity was scanned, the target velocity
was increased in the baseline period using this relationship, so that the baseline error was
equal to the mean error in the preceding test period.
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How can we instantly recognize a famil-
iar object? Probably because, in the
brain, we already have a model of that

object which is activated through vision.
Similarly, we can quickly comprehend what
we hear because the brain is likely to contain
a model representing the meanings of the
sounds we encounter. And we can probably
carry out complex movements so easily and
accurately because the cerebellum provides a
model of what is to be moved. Such internal
models provide an attractive explanation 
for the brain’s subtle cognitive and control
mechanisms, but there has been no way 
to investigate them experimentally. Now, 
however, on page 192 of this issue, Imamizu
et al.1 report a set of brain-imaging data that

provide the first evidence for such a model
being formed in the cerebellum.

The basis of the work done by Imamizu 
et al. is the unique theory2 of the adaptive-
control system with two degrees of freedom
(Fig. 1). It works like this. When we move a
hand, a desirable movement worked out
somewhere in the brain is conveyed as an
instruction to the motor area and its related
regions in the cerebral cortex. These areas in
turn generate command signals, which act
on the hand/arm system to carry out the
movement. Information about the realized
movement is conveyed through the visual
system back to the motor and related areas,
and compared with the movement received
as an instruction. This feedback ensures that
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Figure 1 Block diagram of the two degrees of freedom adaptive-control system with feedback-error
learning mechanism. This system combines a feedback control by the cerebral cortex and a
feedforward control by the cerebellum. The cerebral cortex compares the instructed, desired
movement with a realized movement by sensory feedback, whereas the cerebellum receives only the
instruction. To realize a desired movement without feedback of the realized movement, the
cerebellum needs to form an inverse model of the hand/arm system, as visualized by Imamizu et al.1

using brain-imaging data. (Modified from ref. 2.)
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matching the condition in Jagorina. So there
is no doubt that AMF101607 had an eyestalk.
In consequence, eyestalks can no longer be
considered to be unique to chondrichthyans
and placoderms. 

This is not a trivial point. Changing
knowledge about the distribution of key
characteristics often radically alters our
understanding of the evolutionary relation-
ships of their bearers. Take feathers, for
example — as soon as it was found that
theropod dinosaurs possessed them, feath-
ers could no longer be regarded as unique to
birds. The revelation that the new fish from
Australia had an eyestalk has similar signifi-
cance (if less public appeal).

Based on the cranial features of AMF-
101607 and of examples of other groups in
the evolutionary tree constructed by Zhu et
al.2, and using a computer program called
PAUP, Basden et al. produced several alterna-
tive positions of their fish and Psarolepis
in the tree (see Fig. 3 on page 187). Their
preference is for one with the new form at the
base of the bony fishes and Psarolepis at the
base of the lobe-finned fishes. 

Uncertainty about the positions of the
two forms in Basden and colleagues’ tree
arises mainly from insufficient information.
Specimen AMF101607 is very similar to the
two Late Devonian ray-finned fishes, so we
ought to compare them more thoroughly.
The eyestalk-attachment area in AMF-
101607 seems to occupy exactly the same
position as the opening for the optic nerve 
in Mimia and Moythomasia (and is almost

the same shape and size), so it could be that
these fishes also had an eyestalk. Compari-
son of the new form with Mimia and
Moythomasia will help to identify the closest
relative of bony fishes, and may even tell us
something about the evolution of jawed 
vertebrates as a whole. 

Other new knowledge also has to be taken
into account. The characters previously held
to be unique to osteichthyans have recently
been identified in a chondrichthyan from
Bolivia8, and a molecular study places the
cartilaginous fishes within the bony-fish
evolutionary tree9. All of these developments
challenge our understanding of the relation-
ships among the major groups of primitive
back-boned animals and demand a pro-
found change of conventional wisdom. The
new form reported by Basden et al. is a 

Figure 2 Fish braincases in lateral view, showing
the eyestalk, or its base or site of attachment (all
marked as E; see also Fig. 2 on page 186). The
eyestalk is a diagnostic feature that was thought
to be unique to chondrichthyans and
placoderms, but is evident in Basden and
colleagues’ fish1. a, Chlamydoselachus
(chondrichthyan), a recent shark5. b, Jagorina, 
a placoderm6. c, Brindabellaspis, a placoderm1.
O, the opening for the optic nerve.
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welcome addition to the list of candidates 
for the position of ‘ancestor’ of the bony 
fishes. But whether it will be elected remains
to be seen. ■
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the realized movement is similar to the
‘instruction’ movement. The instruction
may also be converted to command signals
by the cerebellum, instead of by the cerebral
cortex.

Even without such feedback, this path-
way could produce a movement that closely
matches the movement received as an
instruction. For this to happen, however, 
the cerebellum would need to contain the
inverse of the dynamics or kinematics of the
hand/arm system — in other words, the
cerebellum would need to contain an inverse
model of the hand/arm system. The model is
formed and updated through learning, by
referring to the errors between the intended
and performed movements, as detected by
the motor and related areas of the cerebral
cortex (feedback-error learning)2.

To test this hypothetical prediction,
Imamizu et al.1 asked a human subject lying
in a functional magnetic resonance imaging
(fMRI) scanner to manipulate a computer
mouse. During the so-called ‘baseline’ period,
the subject followed a moving square 
target with a cross-hair cursor on a screen.
Then, during the test, the position of the 
cursor was rotated 120° around the centre of
the screen to provide a new mouse ‘condi-
tion’. At first, during the test period, large
regions of the cerebellum were significantly
activated compared with their activity dur-
ing the baseline period. But this activation
decreased after repeated test trials, in parallel
with a reduction of the tracking errors. How-
ever, certain restricted sub-regions of the
brain (near the posterior superior fissure)
continued to be activated. The authors pro-
pose that this remaining activity represents
an internal model that is formed during the
repeated test trials. This model defines the

new relationship between movement of the
cursor and of the mouse. 

The internal-model concept for motor
learning is reasonable if we consider the
known cellular mechanisms of the cerebel-
lum. The cerebellum has a compartmental-
ized structure that consists of numerous
small, functional units, each of which con-
tains a neuronal network, composed of
Purkinje and other neurons, organized in a
geometrically beautiful way (Fig. 2). Each
unit can change its input–output relation-
ship through learning, which is driven by
error signals conveyed to the Purkinje cells
by a unique input structure, the climbing
fibres. Climbing-fibre signals induce long-
term depression (LTD) of transmission from
a major input to the Purkinje cells, via the
mossy fibre–parallel fibre pathway3. LTD
depresses those synapses between the paral-
lel fibres and Purkinje cells that are involved
in making errors, thereby reorganizing inter-
nal connections towards a reduction of the
errors. Through this learning mechanism 
a cerebellar unit could modify its input–
output relationship until it represents the
model required for precise control.

A crucial question is whether an increase
in local blood flow in the cerebellum, as
detected by fMRI, really represents the for-
mation and maintenance of an internal
model. If LTD is the only synaptic plasticity
that underlies the learning mechanism of the
cerebellar circuitry, the learning is unlikely to
be accompanied by an increase in electric
impulse discharges (which may be reflected
as increased local blood flow). So the authors
assume that excitatory and inhibitory syn-
aptic transmissions to the Purkinje cells 
are facilitated, and that electric-impulse 
discharges of the Purkinje cells increase.

But in the complex neuronal circuitry of
the brain there may be other possibilities. For
example, many chemical reactions underlie
the induction of LTD, including the release of
nitric oxide, which has a well-known action
of relaxing blood capillaries. The next ques-
tion to address experimentally is how not only
the electric-impulse discharges, but also the
complex chemical processes, contribute to
increases in local blood flow in the cerebellum.

As neuroscientists strive to understand
the molecular and cellular events that occur
in neurons, effective technologies and
methodologies for experimentally investi-
gating computational and cognitive princi-
ples of the brain are still in short supply. The
success of Imamizu et al.1 in visualizing an
internal model in the cerebellum should
therefore provide tremendous encourage-
ment for other researchers in the field. ■
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Daedalus

Coal, air, fire and water
Coal-mining is a costly, labour-intensive
activity. Many attempts have been made to
extract at least some of the energy of coal
in situ, by underground gasification.
Daedalus is now updating this idea.

A coal mine, he points out, fills with
water unless constantly pumped out. In a
flooded mine the water is under
hydrostatic pressure. At the bottom of a
mine more than about 2.2 km deep, it
would reach supercritical pressure.
Heated, it could not boil, but would go to
supercritical water — a powerful solvent
and reaction medium. If it contained
dissolved oxygen, organic materials
including coal would burn spontaneously
in it. So, says Daedalus, drill two holes
down to a sufficiently deep coal seam,
lower some sort of robot borer to drill a
tunnel connecting the two holes, and fill
the whole thing with water. Ignite the coal
electrically or pyrotechnically, and pump
aerated water down one shaft and up the
other. The water flow will then deliver the
products to the surface.

What will those products be? In the
presence of excess fuel — such as a vast coal
seam — supercritical combustion is a very
partial business. Toluene, for example,
burns in limited oxygen to benzoic acid.
Coal will go to big aromatic or quinonoid
molecules, with enough oxygen in them to
dissolve in the water. The upcoming stream
of hot water will boil as the hydrostatic
pressure lessens. The steam will contain
the more volatile organics, easily separable
by fractionation, ideally by stepwise
expansion in a steam engine. Bigger
molecules will stay in the water; some will
crystallize out as it cools. So the mine will
yield steam power, plus a stream of useful
fuels and chemical feedstocks. Sulphur
dioxide in the water will be processed to
useful sulphuric acid, and solid ash will
mainly stay underground.

A supercritical mine will access a vast
amount of coal. The initial narrow tunnel
will soon widen laterally as it eats the seam
away from between the rocky strata above
and below it. As it widens, the tunnel will
slowly collapse in the middle by
subsidence, giving two tunnels. These will
gradually move apart through the seam,
scouring it out as subsidence propels them
sideways. The vast coal reserves more than
2.2 km down, too deep for normal mining,
will be accessible at last. David Jones

The Further Inventions of Daedalus (Oxford
University Press), 148 past Daedalus columns
expanded and illustrated, is now on sale.
Special Nature offer: m.curtis@nature.com

Figure 2 Basic structure of the neuronal circuitry
in the cerebellum. A single functional ‘unit’ is
shown. Mossy-fibre signals provide inputs to 
the unit and neurons in the cerebellar nucleus
generate outputs. Climbing-fibre signals
represent errors, reorganizing internal
connections within the unit to modify its
input–output relationship. LTD, long-term
depression. (Adapted from ref. 3.)
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