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Abstract

Pose estimation from an arbitrary number of 2-D to 3-
D feature correspondences is often done by minimising a
nonlinear criterion function using one of the minimal rep-
resentations for the orientation. However, there are many
advantages in using unit quaternions to represent the ori-
entation. Unfortunately, a straightforward formulation of
the pose estimation problem based on quaternions results
in a constrained optimisation problem. In this paper we
propose a new method for solving general nonlinear least
squares optimisation problems involving unit quaternion
functions based on unconstrained optimisation techniques.
We demonstrate the effectiveness of our approach for pose
estimation from 2-D to 3-D line segment correspondences.

1. Introduction

The object pose is defined as the displacement of the co-
ordinate frame rigidly attached to the object from its ini-
tial position, where it is aligned with the world coordinate
frame, to its current position. There exist analytical and lin-
ear solutions to the problem of pose estimation from 2-D
to 3-D feature correspondences [1, 2], but they are sensitive
to noise. In the presence of noise, which is unavoidable in
real-world applications, algorithms based on nonlinear op-
timisation methods give more accurate results.

Nonlinear optimisation techniques have been used for
pose estimation by many researchers in the past. A good
overview is given in [1]. In most of these approaches, Eu-
ler’s angles were used to parameterise the group of rotations
SO(3) of the Euclidean space. However, it is well known
that SO(3), which is a three dimensional manifold, cannot
be globally embedded in the three dimensional Euclidean
space. It follows that if the rotation group is represented
by three real parameters, the Euclidean metric topology in
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R
3 does not induce a global topology and metric structure in

SO(3). This suggests that common solutions using minimal
representations of the rotation group are not ideal.

The representation of the rotation group by unit quater-
nions, which form a sphere S3 in R

4, has many advantages
over minimal representations. Methods for pose estimation
based on the quaternion representation of the orientation
have been proposed in the literature before [1], but the pose
estimation problem has been formulated as an optimisation
problem in R

4 rather than on S3 in these approaches.

2. Preliminaries

In the following we shall need the exponential map exp :
R

3 → S3, which is given by

exp(r) =




(
cos(‖r‖), sin(‖r‖) r

‖r‖
)

, r �= 0

(1, 0, 0, 0), r = 0
. (1)

The exponential map transforms a tangent vector r ∈ R
3 ≡

T1(S3) into q ∈ S3, where q is a point at distance ‖r‖ from
1 along a geodesic curve starting from 1 in the direction of
r [3]. Geodesics are defined as shortest paths connecting
any two points on a manifold (sphere S3). It turns out that
for any other point q ∈ S3 and for any rq ∈ Tq(S3), rq ∗
q ∈ T1(S3) ≡ R

3 and the exponential map at q, expq :
Tq(S3)→ S3, having the above properties is given by

expq(rq) = exp(rq ∗ q) ∗ q, (2)

where ∗ denotes the quaternion multiplication.
Lets consider the problem of pose estimation from 2-

D to 3-D line segment correspondences. Let mk =
(x1

k, x2
k), k = 1, . . . , N, be the end-points of the k-th

3-D line segment belonging to the object’s model and let
Aj , j = 1, . . . , M, be the projective mapping onto the j-th
image plane. These mappings should be made available by
a camera calibration procedure. Let f denote the mapping
which transforms the end-point representation of a 2-D line
segment into its mid-point representation

f (v1, v2) =
[
vT

1 + vT
2

2
, arctan

(
y2 − y1

x2 − x1

)]T

, (3)



where vl = [xl, yl]T . The length of a line segment is ex-
cluded from this mapping because it is more noisy than
other mid-point parameters. We encode the pose p by a
3-D vector t ∈ R

3 and by a quaternion q ∈ S3. Let
gjk : R

3 × S3 → R
3 be the following mappings

gjk(p) = f (Aj(q ∗x1
k ∗ q + t), Aj(q ∗x2

k ∗ q + t)). (4)

Each gjk maps the k-th 3-D model segment onto the 2-D
image segment obtained by moving the model segment by
p = (q, t) and by projecting the resulting segment onto the
j-th image plane.

We assume now that the correspondences between the
measured image segments yjk = [uT

jk, ϑjk]T and the
model segments mk are given. The optimal estimate for
the current object pose can be calculated by minimising the
following nonlinear criterion function

1
2

M∑
j=1

N∑
k=1

(
yjk − gjk(t, q)

)�
Σ−1

jk

(
yjk − gjk(t, q)

)
=

1
2

3MN∑
k=1

hk(t, q)2, (5)

where Σjk are the covariances of the measured segments.
The minimisation of (5) over t and q would be a classic

nonlinear least squares optimisation problem if we could
treat q as an element of R

4 and not of S3. Since this is
not the case, the classic approach would be to add the con-
straint |q| = 1 to the above criterion. In the next section we
propose a better solution.

3. Least squares optimisation on unit sphere

Lets consider the minimisation of sum of squares of gen-
eral unit quaternion functions

min
q∈ S3

{
F (q) =

1
2

n∑
k=1

fk(q)2 =
1
2
f (q)T f(q)

}
. (6)

Denoting the n × 4 Jacobian matrix of f(q) as J(q), the
gradient∇F (q) and the Hessian∇2F (q) are given by

∇F (q) = J(q)T f(q), (7)

∇2F (q) = J(q)T J(q) +
n∑

k=1

fk(q)∇2fk(q). (8)

Let qi be the current approximation for the minimum of (6).
The Taylor series expansion for the vector function∇F (q)
around∇F (qi) is given by

∇F (q) ≈ ∇F (qi) +∇2F (qi)(q − qi) (9)

Using the above expansion and the fact that ∇F (q) = 0
at the minimum of F , the next approximation for the mini-
mum can be calculated as follows

qi+1 = qi − (∇2F (qi))
−1∇F (qi). (10)

If we assume that the value of F is small for all q belonging
to the neighbourhood of the solution, i. e. fk(q) ≈ 0 for all
k, we obtain the following approximation for the Hessian in
the neighbourhood of the solution based on Eq. (8)

∇2F (q) ≈ J(q)T J(q). (11)

Writing this approximation for the Hessian in (10), we ar-
rive to the Gauss-Newton iteration, which is very effective
provided a good starting point is known

qi+1 = qi − (J(qi)
T J(qi))

−1JT (qi)f (qi). (12)

Unfortunately, qi+1 given by iteration (12) does not nec-
essarily lie on the unit sphere. This is due to the fact that
this iteration searches for the minimum of (6) in the R

4-
neighbourhood and not in the S3-neighbourhood of qi. To
define an iteration on the unit sphere we observe that the
neighbouring points of qi in S3 are given by exp(ω) ∗
qi, ω ∈ R

3. Hence we can write criterion (6) as

Gi(ω) =
1
2

n∑
k=1

fk (exp(ω) ∗ qi)
2 =

1
2

n∑
k=1

gi
k(ω)2

=
1
2
gi(ω)T gi(ω). (13)

Gi can be viewed as a mapping from R
3 to R. Eq. (2)

guarantees us that in this way we cover the whole tangent
space Tqi(S3) or, in other words, all directions starting
from qi. We want to calculate the next approximate qi+1

as qi+1 = exp(ωi) ∗ qi. Because of the properties of the
exponential map, such qi+1 lies along the geodesic curve
starting at the current approximate qi in the direction of
ωi ∗ qi. Since the exponential map preserves distances, the
length of the step on the sphere is equal to the norm of ωi.

To determine ωi, we take zero as an initial approxima-
tion for the minimum of criterion (13). We denote the n×3
Jacobian matrix of gi at ω = 0 as J i. In these circum-
stances, one step of the Gauss-Newton iteration (12) results
in the following approximation for the minimum of crite-
rion (13)

ωi = −(JT
i J i)−1JT

i gi(0). (14)

Thus the Gauss-Newton iteration on the unit sphere can be
summarised as follows:

(i) Initialisation:

q0 ← initial approximation.

(ii) Loop:

qi+1 = exp
(
−(JT

i J i)−1JT
i gi(0)

)
∗ qi.

(iii) Convergence test:

‖∇Gi(0)‖ = ‖JT
i gi(0)‖ < ε.



Figure 1. Stereo image pair showing the line seg-
ments extracted from one image and the edges of the
localised objects projected onto the other image

Our goal is to develop a method for the minimisation of
(5) over (t, q) ∈ R

3 × S3. To achieve this we write (5) as

1
2

3MN∑
k=1

hk(ti + d, exp(ω) ∗ qi)
2 =

1
2
gi(d, ω)T gi(d, ω).

(15)
Using the same approach as in the case of pure unit quater-
nion functions, the Gauss-Newton iteration on R

3 × S3 can
be formulated as follows

ti+1 = ti + di,

qi+1 = exp(ωi) ∗ qi, (16)[
dT

i ωT
i

]T
= −(JT

i J i)−1JT
i gi(0, 0),

where J i is the Jacobian of gi at (0, 0). This iteration gen-
erates a sequence which is guaranteed to lie in the search
space R

3 × S3. Since there are no conversions of orien-
tation in some foreign form, such as Euler’s angles, to a
quaternion form, the non-uniqueness of the quaternion rep-
resentation does not cause any problems. Since the metric
structure of SO(3) is the same as the one of S3, the above
iteration may be viewed as an iteration in R

3 × SO(3).

4. Experimental results and conclusions

To validate the proposed method experimentally, we
used it for the calculation of objects’ poses from line seg-
ment correspondences in a system for object recognition
and localisation (see Fig. 1). The convergence of the
method is shown in Tab. 1. Even when the starting point
was very inaccurate, the Gauss-Newton method converged
to the true object pose provided the feature correspondences
were correct. Hence there is no need to use more robust
techniques like the Levenberg-Marquardt method for pose
verification in calibrated stereo images. Assuming that fea-
ture correspondences are correct and the measurement noise
is moderate, the criterion function (15) tends to zero in the
neighbourhood of the solution and the convergence of the
method is nearly as good as the convergence of the Newton-
Raphson iteration.

Table 1. Convergence of the method. The Euclidean
and the angular metric were used to measure the
change in the position and orientation, respectively.

Step (trans.) Step (orien.)

4.962116e+01 2.827351e-01

1.095884e+01 7.604011e-02

2.851983e-01 2.920441e-03

7.462760e-04 1.835331e-05

2.017427e-06 1.241607e-07

Further experiments should be carried out to test the
method for the case when only one camera is available. The
presented method is general and works with any kind of fea-
tures. The usage of line or point correspondences requires
only a redefinition of function f , which is defined for the
case of line segments in Eq. (3).

Comparing our approach with the one of Phong et al. [4],
who also used quaternions to represent the orientation, our
iteration has the advantage that it searches for the optimal
orientation directly in S3 and not in R

4 as the method of
Phong et al. Phong et al. had to introduce a penalty term
to force the minimum of their criterion to tend towards S3.
However, this penalty term requires the setting of a user-
defined parameter which is at best arbitrary and can cause
problems with the convergence of the iteration. Our method
does not suffer from this problem. Moreover, it is possible
to determine the search direction using the trust region ap-
proach of Phong et al. in our iteration and thus make it less
sensitive to the quality of a starting point and wrong corre-
spondences. This was not necessary for our application.
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