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In SLR toolbox, there are seven binary classification algorithms implemented. In this 

document, the probabilistic models of the implemented classifiers are described and 

then the brief derivation of algorithms is given. The details of deformation of formula is 

given in the appendix. 

 

0. Notations 
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where E(x) and V(x) represent expectation and variance of a random variable x, 

respectively.   
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1. Probabilistic Model 

All the probabilistic models introduced here can be described in the Bayesian model, 

which has the likelihood function and a prior distribution of weight (or boundary) 

parameters. All the models share the identical likelihood function known as the 

logistic regression (Eq.1) while they uses the different prior distributions. 

 

Likelihood Model (Logistic Regression (LR) 

The logistic regression model is a probabilistic model for binary data developed in 

the field of statistics. The likelihood function of LR is given in the following form,  
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where ( )t
n n w x   and the linear boundary is assumed. 

 

1.1 Sparse Logistic Regression (SLR) 

The likelihood function is given by Eq.(1). 

The prior distribution of SLR has the following hierarchical form; 
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This hierarchical distributions are known as the automatic relevance determination 

(ARD) priors in the sparse Bayesian learning literature. The parameter d  is 

called the relevance parameter that represents relevance of the corresponding 

weight parameter. The larger this value is, less relevant the corresponding weight 

parameter is. If the relevance parameter is marginalized beforehand, we know that 

the hierarchical prior distributions are equivalent to the following prior distribution 

of weight parameters, 

0( ) 1/ | | 1, , d dP w w d D . 

The hierarchical form makes it easier to calculate the posterior distribution in an 

analytical way. Thus the equation (2) is used. 

 

1.2 Regularized Logistic Regression (RLR) 

The likelihood function is given by Eq.(1). 

The prior distribution of RLR is the following multivariate Gaussian distribution; 
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dI  is the identity matrix of size D D . 

 

1.3 Linear Relevance Vector Machine (RVM) 

The likelihood function is given by Eq.(1) except the linear discriminant function 

being represented by the linear kernel as follows, 
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Thus the likelihood for each single data is represented by ( ( ) )n n k x w  . 

The prior distribution of RVM is the ARD prior (Eq(2)).  

 

It should be noted that the sparseness of SLR and RVM results in the different 

interpretation. The parameters in SLR are associated with features, while the 

parameters in SVM are associated with samples (note that the number of weight 

parameters in RVM is N not D). If the parameters in SLR are estimated in a sparse 

way, it can be interpreted as feature selection process but that of RVM can be 

interpreted as sample selection process (similar to ‘support vectors’ in SVM).  

 

Another thing to be noticed is that the extension to the nonlinear discriminant 

function is easily realized in RVM because RVM uses the kernel representation. 

Changing the linear kernel to any other nonlinear kernel such as Gaussian kernel, 

polynomial kernel can model a non-linear boundary.    

 

1.4 L1-Sparse Logistic Regression (L1-SLR) 

The likelihood function is given by Eq.(1). 

The prior distribution of L1-SLR is the following Laplace distribution; 
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This Laplace prior can be expressed in the hierarchical form as follows; 
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Note that 
d  is variance of Gaussian distribution in Eq.(5) whereas it is precision 

(inverse variance) of Gaussian distribution in Eq.(2).   

 

2. Derivation of Algorithms 

Since all the probabilistic models described above are Bayesian models, the task to 

estimate weight parameters is to calculate the posterior probability distribution of 

weight parameters given by 
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Here and hereafter the dependency on X is omitted for notational simplicity. 

Unfortunately the integrals of numerator and denominator are not analytically 

tractable. Therefore some approximation method should be applied. In the 

algorithm derivation, we apply the variational Bayesian method (VB) that assumes 

the conditional independence condition on posterior distributions and then solve the 

posterior calculation by maximizing a specific criteria (called free energy). 

 

At first VB defines the free energy using the test function Q(); 
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The notable issue in this equation is that FE is maximized when and only when the 

test function Q is equal to the joint posterior distribution ( , | )P w α y . In addition the 

maximized value is equivalent to the evidence ( )P y . Therefore maximizing FE 

with respect to test function corresponds to finding the joint posterior distribution 

and computing the evidence. However this functional maximization is as difficult as 

the original problem, thus it can not be solved directly. VB solves this problem by 

restricting the test function to having some functional form. In our application, the 

test function assumes to satisfy the conditional independence condition as 

( , ) ( ) ( )Q Q Qw α w α .       (7) 

Under this condition, FE is maximized by alternately maximizing FE with respect 

to ( )Q w  and ( )Q α . These steps are equivalent to computing the following W-step 

and A-step (for more mathematical details, see Bishop 2006). 



W-step : ( )log ( ) log ( , , ) QQ P αw y w α  

A-step : ( )log ( ) log ( , , ) QQ P wα y w α  

where ( )( ) Qf xx  denotes the expectation of ( )f x  with respect to a probabilistic 

measure ( )Q x . Concrete algorithms to compute the posterior distributions as well 

as the posterior mean (the estimate of the weights) can be derived by substituting 

the probabilistic models described in section 1. But unfortunately even with this 

approximation, W-step is the analytically intractable for the logistic regression 

model since the prior distribution and the likelihood function are not conjugate. A 

further approximation to ( )Q w  is required. There are two approximation methods 

for this purpose; Laplace approximation and variational approximation. Both of the 

methods use the Gaussian distribution as the approximate distribution. This is why 

there are two algorithms in the toolbox even for one probabilistic model SLR (also 

RLR).  

 

2.1. SLR 

2.1.1. SLR with Laplace approximation (SLR-LAP) 

This algorithm uses the Laplace approximation that approximates the posterior 

distribution with Gaussian distribution around the MAP estimate. 

W-step: 
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where 1( , , ) DA diag   . Let’s denote the right-hand side of Eq (8) by ( )E w . 

( )E w  is not the quadratic form of w, thus ( )Q w  is not the Gaussian distribution 

and analytically intractable. But if we notice that ( )E w  is the exactly same form 

as the log-likelihood function of logistic regression with the regularization term, this 

function is well approximated by the quadratic function at the maximizer w  

(Laplace approximation). This maximization is done by the Newton-Rapson method 

using the following gradient and Hessian 


 



E
X Aδ w

w
, 

2

' ( )


    
  t

E
XBX A H w

w w
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Then we obtain the quadratic approximation of log ( )Q w  (or equivalently ( )E w ) 

around the maximizer w , 
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A-step:  
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2,d dw s  are the dth element and the dth diagonal element of w  and S , respectively. 

This updating rule is very slow to converge. Instead we use the following fast 

updating rule motivated by Mackay’s effective number of parameters. 

Fast updating rule: 
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Note that the numerator 
21 d ds  of Eq.(11) is related to Mackay’s effective number 

of parameters (see section 3.5.3 of Bishop 2006). If this value is close to 1, the 

corresponding parameter dw  can be mainly determined by observations, whereas 

if this value is close to 0, the corresponding parameter is not sensitive to 

observations and determined by prior information. 

 

2.1.2. SLR with variational approximation (SLR-VAR) 

This algorithm first approximate the logistic function with a Gaussian distribution 

with one auxiliary variable (variational approximation). According to Jaakkola and 

Jordan 2000, the logistic function can be lower-bounded by  
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Thus the likelihood function is bounded by 
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t

n nz  x w . Using this formula, FE is lower-bounded as follows,  
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Thus maximizing ( ( , ), )FE Q w α ξ  with respect to ( ), ( ),Q Qw α ξ  alternately gives 

us the posterior distributions and optimal variational parameters ξ . Since the 

function ( , , )h y w ξ  is the quadratic function of w  for fixed ξ , ( )Q w  becomes 

the Gaussian distribution, which is easy to calculate analytically. See Bishop and 

Tipping 2000 for more details 
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The computation of w requires the inverse of 2 tA X X  , which is heavy when 

the number of features (=D) is large. The use of Sherman-Morrison-Woodbury 

formula for matrix inversion reduces this burden. 

1

1

1 1 1 1 1

2 ( ) 2 :

( 2 ) : 1

N
t t

n n n

n

t

S A A X X D D

A X X A X D

 



    


     


     

 x x

w y

 

Since the size of matrix which requires inversion (
1 12 tX A X   ) is N N , this is 

operated much faster when the number of samples is less than the number of 



features.  

 

A-step: 

A-step is identical to that of SLR-LAP (see Eq.(11)).  

Fast updating rule : 
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ξ-step: 

Taking partial derivative of ( ( , ), )FE Q w α ξ  and setting it to zero, we have 
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where the right hand side means (n,n) element of the matrix. Here the 

Sherman-Morrison-Woodbury formula was used again. 

 

2.2. RLR 

2.2.1. RLR with Laplace approximation (RLR-LAP) 

W-step:  

If 1( , , ) DA diag    in SLR-LAP algorithm is replaced with  DA I , this step 

is identical to SLR-LAP algorithm.  
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Fast updating rule : ( ) ( ; , ) Q      where 
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2.2.2. RLR with variational approximation (RLR-VAR)  

W-step:  

If 1( , , ) DA diag    in SLR-VAR algorithm is replaced with  DA I , this step 

is identical to SLR-VAR algorithm.  

 

A-step: 

A-step is equivalent to that of RLR-LAP. 

Fast updating rule : ( ) ( ; , ) Q      where 
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ξ-step: 

This step is identical to that of SLR-VAR since this step does not depend on the prior 

distribution. 
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2.3 RVM 

The algorithm implemented for RVM is identical to SLR-VAR except the boundary 

being modeled by the linear kernels. Thus if  t

n nz x w  in SLR-VAR algorithm is 

replaced with ( ) t

n nz k x w , the derivation is identical. See Tipping 2001 for the 

original RVM algorithm. 
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A-step: 

A-step is identical to that of SLR-LAP (see Eq.(11)).  

Fast updating rule: 
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ξ-step: 

Taking partial derivative of ( ( , ), )FE Q w α ξ  and setting it equal to zero, we have 
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2.4 L1-SLR 

The algorithm of L1-SLR-LAP is obtained by modifying the derivation in 

Krishnapuram et.al 2004. The algorithm of L1-SLR-c is based on component-wise 

update procedure with the surrogate function in Krishnapuram et.al 2005. 

   

2.4.1. L1-SLR with Laplace approximation (L1-SLR-LAP) 

We use the hierarchical form of the Laplace prior (Eq.5). The derivation is very 

similar to that of SLR-LAP.  
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(Newton-Rapson method) as W-step of SLR-LAP with A  replaced with V . 
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2,d dw s  denote the dth element and the dth diagonal element of the weight 

posterior distribution.  
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Unfortunately this distribution is not the Gamma distribution unlike SLR model. 

But only necessary quantity in W-step is the expectation of 
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 and this value can 

be analytically computed as follows, 
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 The formula derived from EM algorithm is very similar (see Krishnapuram et.al 

2004), 
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Only the difference is whether the posterior variance of weights is included in the 

denominator. My little experience showed that Eq.(23) does work well but Eq.(22 



does not. Thus Eq.(23) is applied in the current implementation. Reasons for this 

issue have not been made clear yet.  

 

2.4.2. L1-SLR with component-wise updates (L1-SLR-c)  

This algorithm uses the prior distribution Eq.(4) rather than the hierarchical prior 

distributions Eq.(5). Thus the relevance parameters do not appear in the algorithm 

derivation. The weight updating rule is obtained by directly differentiating the 

surrogate function.  

 

The MAP estimated of weight parameters are obtained by 
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Then by directly differentiating 
( )ˆ( | )tQ w w  with respect to dw  we have the 

following updating rule,  

( )
( 1) ( 1) ˆ( )

;

( ; ) ( ) max{0,| | }



 

 
 

   
 

 

t
t t k

d d

kk kk

g
w soft w

B B

where soft a sign a a

w

    (24) 

For more mathematical details, please read the original paper. 

 



 

3. Algorithm Summary 

The algorithms of SLR-LAP and SLR-VAR are described here. The other algorithms 

(RLR-LAP, RLR-VAR, RVM, L1-SLR-LAP) are similar therefore omitted.  

- SLR-LAP 

1. Initialization 

Set 1 1, ,  d d D  

2. W-step 
1( ) ( , ) ( )Q N S where S Hw w w  

w  is the maximizer of ( )E w  that can be obtained by the Newton-Rapson 

method. 
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3. A-step:  
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2,d dw s  are the dth element and the dth diagonal element of w  and S , 

respectively. 

4. Convergence: 

Continue W-step and A-step alternately until the change of weight parameters is 

very small or the number of iterations exceeds the predefined value. 



 

- SLR-VAR 

 

1. Initialization 

Set 1 1, ,  d d D  and 2 1, ,  n n N  

2. W-step 
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3. A-step:  
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2,d dw s  are the dth element and the dth diagonal element of w  and S , 

respectively. 

4. ξ-step: 

2 ( ) 1, ,  t t

n n nS n N x ww x  

5. Convergence: 

Continue W-step, A-step andξ -Step alternately until the change of weight 

parameters is very small or the number of iterations exceeds the predefined value. 
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Appendix : Deformation of formula : Details 

This appendix presents details of equation manipulation.  

 

In 1.1 Sparse Logistic Regression (SLR) 
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In 1.4 L1-Sparse Logistic Regression (L1-SLR) 
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Here we used the following formula, 
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In 2.1.1. SLR-LAP 

W-step: 
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In 2.1.2. SLR with variational approximation (SLR-VAR) 

From the variational approximation to the logistic function(Jaakkola and Jordan 2000), 
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In 2.2.1 RLR with Laplace approximation (RLR-LAP) 
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In 2.4.1 L1-SLR with Laplace approximation (L1-SLR-LAP) 
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