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Summary of Deliverables:
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Report, including summary of theory and itemized deliverables (this docu-
ment)

readme.txt: instructions for how to run source code

fakeData_test.m: Matlab code to generation synthetic data sets to set VBLS
vbls.m: Matlab code to run VBLS

pls_vl.m: Matlab code for partial least squares regression

arrfit. m: Matlab code for adaptive ridge regression



Summary of Variational Bayesian Least Squares

1 Model

Given we have a training dataset D = {yiyxi}¢]i1 that consists of a scalar output y; and d-
dimensional inputs x; (a d by 1 vector) for each of the N data samples, the model for Variational
Bayesian Least Squares consists of the following distributions:

Yilzi ~ Normal 1 Z7,¢y)

Yem
Zim|bm, @ ~ Normal < mﬂ%m, )

by |am ~ Normal (O, )
am ~ Gamma (dam, bam)

where 1 is a d by 1 vector of ones. We can use the variational factorial assumption that the
posterior over the unknown variables 0 = {a, b,Z} factorizes as Q(«,b)Q(Z), where Z is a
diagonal matrix with a diagonal vector of z. The complete log evidence is:

logp(y, 0|X; @) = Zlogp Yilzi) —I—Z Z log p(Zim |[bm, am) + Z log (b |am) + Z log p(cum)

i=1 m=1

where ¢ are the point-estimated parameters ¢ = {1,, 1. }. The EM update equations can now
be derived using standard manipulations of Normal and Gamma distributions.
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2 EM Update Equations

The final EM update equations are listed below:
E-step:
T, (A) 117, (A)!
Py + 170, (A) "1

(—HT +w! <A>>_1 =W (A) -
(z;) = 2. (wy 1y + 1 (A) (B)xi>

B T, (A)'1 ‘ _ v (A) 1T(B) )
_<wy+1T\IIZ<A>11>yl+<<B> wy+1T‘I'z<A>11> l “

i=1 =1
o = o0+ (6)
) 1 | al Y i
2 |i=1 i=1 i=1
M-step:
1 N T 2 T
Yy = NZ(%—l (i) +173:1 ()
i=1
1 & 1 o
Yo = 2 D () ((zim) — o) i) + ) 0%, + () 07, <N Zm?m) o
i=1 =1

where (A), (B), ¥, are diagonal matrices with diagonal vectors of (@), (b), 1., respectively;
aqo = 1078 and by = 10781; and X, is the covariance matrix of z that is a diagonal matrix
with a diagonal vector of o2.

3 Monitoring the Incomplete Log Likelihood

To know when to stop iterating through the EM algorithm above, we should monitor the
incomplete log likelihood and stop when the value appears to have converged. To calculate the
incomplete log likelihood, we need to integrate out the variables a, b, Z from the complete
log likelihood expression. But since the calculation of the true posterior distribution Q(0) is
intractable, we cannot determine the true incomplete log likelihood. Hence, for the purpose
of monitoring the incomplete log likelihood in the EM algorithm, we can monitor the lower
bound of the incomplete log likelihood instead.

In the derivation of the EM algorithm, we reached an estimate of Q(f), where 0 = {«, b, Z}, to
be Q(0) = Q(a,b)Q(Z). The lower bound to the incomplete log likelihood, where ¢ = {1, 1.}



is:

o p(y, 01X; ¢)

logp(y1X:0) = [ Q)1 s
:/Q (0)log ply, 01X: ) do—/Q (0) Tog Q(0)d0 (10)
= (log p(y, 01X: 6)), / Q(6)log Q(0
where:
[ aenoz Qe

=//Q Bla)log Q(Bla) dadﬁ+/Q(a)logQ(a)da+/Q(Z) log Q(Z)dZ (11)
d

d
- 1
(o) (o, +1) E log bam — 510g|22| + const
=1

m=1

and:

(log p(y, 01X; 9)) g6

m=1 m=1
N 1
= _?logwy 20 Z (i — 21" (z;) + 17 <Z7ZT> 1)
Yy




Since (10g @) = U (dam) — 10g bam:

(log p(y, 01X; 6)) g0y

N R
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We can put Egs. (11) and (12) together so that Eq. (10) becomes:

log p(y|X; ¢) >
N

o> (e~ 2017 () 17 (el ) 1)

- zd: () (z}am + <b§”>> + zd: (aam + % - 1) U (Gam) — Zd: (% - 1) 10g bam

m=1 m=1



