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Abstract

We present a new approach to modelling non-stationarity in EEG

time series by a generalized state space approach. A given time series

can be decomposed into a set of noise-driven processes, each corre-

sponding to a different frequency band. Non-stationarity is modelled

by allowing the variances of the driving noises to change with time,

depending on the state prediction error within the state space model.

The method is illustrated by an application to EEG data recorded dur-

ing the onset of anaesthesia.

key words: State space model, Kalman filter, frequency decomposition,

autoregressive model, conditional heteroscedasticity, non-stationarity,

anaesthesia.
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1 Introduction

Brain dynamics can be analyzed by estimating the frequency spectrum of

the electroencephalogram (EEG), which can be done by parametric or non-

parametric methods; Fast Fourier Transform (FFT) represents a well-known

nonparametric method (Priestley [1], Kay [2]), while fitting of autoregres-

sive (AR) models is a prominent example of a parametric method (Box and

Jenkins [3], Gersch [4]). However, in the case of the presence of pronounced

non-stationarity in the EEG, such as time-dependent changes of the power

in different frequency bands, direct application of the FFT to the data would

be inappropriate.

Although in this case it is still possible to apply the FFT to a window

moving over the data, such approach would have the disadvantage of reduced

resolution either in time or in frequency domain; improved resolution in time

domain, desirable in order to pick out distinctive temporal characteristics

in the data, has to be paid by reduced resolution in frequency domain, and

vice versa.

In contrast, parametric spectral estimation by AR models offers various

advantages over the FFT, since it represents a more general and flexible

framework for parsimonious dynamical modelling of time series data, which

can be readily employed for purposes such as prediction, classification or

causality analysis of time series (Shumway and Stoffer [5]); in the case of

non-stationarity, parametric spectral estimation may also be applied to a
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moving window (Ozaki and Tong [6]), but as we will show in this paper, there

is an alternative approach for this situation which avoids the introduction

of a moving window.

We will model the EEG by a linear autoregressive model in a state space

framework, which is suitable for describing the simultaneous presence of sev-

eral major frequency bands; the non-stationarity will be added by employing

the Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

model, as introduced by Engle [7] for the modelling of time-dependent vari-

ance, and generalized by Bollerslev [8], but in contrast to the usual usage of

the GARCH model we will apply it within state space.

The concept of employing the GARCH model within a state space has

been introduced by Galka et al [9] in a study on the estimation of inverse

solutions from EEG time series; for simulated data they obtained improved

reconstruction of true states by this technique.

It is a property of the GARCH model that non-stationarities can be

detected with very good temporal resolution (Bollerslev [8]); therefore we

propose it as an appropriate tool for the modelling of transients and rapid

changes of spectral properties, as they are commonly observed in EEG time

series. As an example we will discuss in this paper the case of a clinical

EEG time series displaying the transition from awake conscious state to

anaesthesia.
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2 An example serving as motivation

The EEG time series which we will study in this paper was retained from a

recent study of John et al [10] and John [11] who have studied the change

of spectral content of clinical EEG accompanying the loss and subsequent

recovery of consciousness due to initiation and termination of anaesthesia

during surgery. The data was measured at 19 electrodes fixed to the scalp

according to the international 10/20 System. The detailed experimental

procedures have been described in John et al [10] and Prichep et al [12].

Based on techniques from descriptive statistics, including FFT spectrum

estimation and computation of mean z-scores, John et al [10] found that an

increase in absolute power of the low frequency band occurs when patients

lose consciousness. In this paper we will study the same topic and confirm

their result by a parametric approach.

We select from their data a segment of 2048 samples from the T4 elec-

trode (versus average reference), sampled at 100 Hz, such that the segment

extends over about 20 seconds. This data set covers the transition from

awake conscious state to anaesthesia. The data is shown in Figure 1.

Figure 1 about here

At time 0 seconds, induction of anaesthesia begins. At about 10 seconds,
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loss of consciousness occurs. It can be seen in the figure that starting from

this time the amplitude of low-frequency activity in the EEG displays a

pronounced increase.

In the lower panel of Figure 1 the spectral density according to a “con-

ventional” moving window analysis is shown: The data was divided into 15

segments, each of length 256 samples, where consecutive segments overlap

by 128 samples. Autoregressive models of order 8 are fitted to each segment,

and the resulting parametric spectra are displayed. A peak at 10 Hz can be

seen persistently; at low frequency the power rises at about 10 seconds.

3 Methods

The EEG data as shown in Figure 1 appears to be a superposition of several

different source components. We intend to decompose the data into source

components corresponding to several major spectral bands. Each component

is described by a dynamical process, and each of these processes may have

a different non-stationary behaviour of variance.

Let yt denote the observed data and xt the unobserved state. We assume

that xt depends on its past values through a linear stochastic model, con-

taining a dynamical noise term, and that yt follows from xt through a linear

observation model, containing an observation noise term; then the following
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state space model applies:

xt = Fxt−1 + wt (1)

yt = Hxt + εt (2)

Equations (1) and (2) are commonly known as system equation and

observation equation, respectively. wt denotes the dynamical noise term

of the system equation, assumed to follow a multivariate Gaussian distri-

bution wt ∼ N (0, Qt), while εt denotes the observation noise term of the

observation equation, assumed to follow a univariate Gaussian distribution

εt ∼ N (0, R).

Kalman [13] introduced a filtering technique for state space models which

can efficiently calculate the conditional prediction and conditional filtered es-

timation of unobserved states. A comprehensive introduction to state space

models and Kalman filtering has been provided by Kalman [13], Harrison

and Stevens [14], Harvey [15], Grewal and Andrews [16].

Since we aim at decomposing the data into a set of source components,

we choose a special structure for the state space model, such that pairs

of elements within the state vector xt represents autoregressive models of

second order, AR(2). Each AR(2) model is capable of describing one main

frequency found in the data. For a detailed account of the representation of

oscillations by AR(2) models see Box and Jenkins [3].

Assume that r denotes the number of source components, then the state

xt is a column vector of dimension 2r, F is a 2r × 2r matrix and H is a 2r
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row vector. For each of the r source components there is a 2×2 block on the

diagonal of F , all other elements of F are zero. Each 2×2 block contains two

parameters, which define frequency and damping of the corresponding AR(2)

model; thereby each component contributes to modelling the spectrum of

the data.

The state vector and the two parameter matrices of the model then

become

xt =

2
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H =
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–

Qt denotes the variance matrix of the dynamical noise wt; also this

matrix is composed of 2×2 blocks on the diagonal, each block corresponding

to one AR(2) model, but here only one element within each block is nonzero

(Harvey 1989):
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are time-dependent; according to the

GARCH approach in its general form, they are modelled by
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The first term on the right-hand side of this equation, log
(
σ

(k)
0

)2
repre-

sents a constant, which in general may be non-zero, but here we will set it

zero in order to avoid parameter redundancy. The first sum represents an

autoregressive model of order p for the logarithm of the variance, while the

second sum corresponds to a moving-average (MA) dynamical noise term.

Expressing this GARCH model by the logarithm of the variance has the

beneficial effect of preventing the variance from becoming negative.

In the original GARCH model the dynamical noise vt−j would be given

by previous values of the prediction error of the data, thereby feeding back
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increases of the prediction error into the variance of the dynamical noise;

but in the state space approach the state prediction errors are not directly

accessible, therefore we estimate it by forming the matrix E
(
wt−jw

′
t−j |yt−j

)

(where E(.) denotes expected value) and extract from its diagonal the first

element for log
(
σ

(1)
t

)2
, the third element for log

(
σ

(2)
t

)2
, etc. The detailed

derivation and resulting expression for E
(
wt−jw

′
t−j |yt−j

)
can be found in

the Appendix.

The model parameters in Equations (1), (2) and (3) are estimated from

given data by the maximum-likelihood method. Given a set of parameters,

computation of the likelihood from the errors of the data prediction through

application of the Kalman filter is straightforward; see Mehra [17], Astrom

and Kallstrom [18] and Valdés-Sosa et al [19] for a detailed treatment.

4 Results

We choose to employ a state space model consisting of r = 4 AR(2) models,

such that 4 major frequency bands can be described. By fitting the model

to the data shown in Figure 1 these frequencies are found as 2.4Hz, 10.3Hz,

17.6Hz and 24.5Hz, corresponding to the delta, alpha, mid-range beta and

low-range gamma frequency bands, respectively.

We find that the autoregressive parameters α
(k)
i in Equation (3) do not

differ significantly from zero, therefore we set the AR order to p = 0, which

helps to reduce the number of parameters to be fitted. We also impose the
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constraint β
(k)
1 = · · · = β

(k)
q =: β(k), such that the variances can change

smoothly, and we have a further reduction of the number of parameters.

Since the likelihood does not improve significantly for MA order q larger than

2, we set q = 2. The resulting estimate of β(k) for the 2.4Hz-component is

0.42, while for the other components values of -0.047 (10.3Hz), 0.42 (17.6Hz)

and -0.25 (24.5Hz) are found.

Figure 2 about here.

In Figure 2 we show the estimated components z
(k)
t , k = 1, 2, 3, 4; these

components, each corresponding to one of the four frequencies, represent a

decomposition of the original data (shown again in the bottom panel of the

figure), such that by summing up these components according to Equation

2, using the weights c(k), the original data is reproduced. Note that a pro-

nounced increase of amplitude occurs for the 2.4Hz-component at about 10

seconds; this effect is solely obtained as a result of the maximum-likelihood

model fit, without any input of prior knowledge concerning the change of

the spectral composition of the data.

Figure 3 about here.
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In Figure 3 we show explicitly the variances log
(
σ

(k)
t

)2
of the compo-

nents as functions of time, according to the fitted GARCH models. It can

be seen that for the 2.4Hz-component the variance increases at about 8 sec-

onds to a considerably larger value than before, and maintains that larger

value within the second half of the data set. The variances of the other

components do not display significant changes. This result can be readily

interpreted by stating that the loss of consciousness at onset of anaesthesia

is reflected almost exclusively by an increase of power in the delta band.

5 Discussion

In this paper we have proposed a new tool for quantitative description of

non-stationarities in EEG time series. For this purpose we have introduced

a model for decomposition of a given single-channel EEG time series into

components defined by their main frequency, and we have shown how the

variances of the dynamical noises driving these components can be made

time-dependent by generalising the concept of GARCH modelling to the

situation of state-space modelling. As a result, changes of the distribution

of power over the main spectral bands of the EEG can be traced over time.

Note that by choosing the GARCH approach for describing non-stationarity

of variance we obtain a method which remains suitable for real-time moni-

toring, in contrast to approaches which describe non-stationarities retrospec-

tively by fitting explicitly time-dependent functions to the non-stationary
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parameters; the GARCH model is fully compatible with predictive mod-

elling, since it requires only information from the past.

Once a suitable model structure has been identified (with respect to

the number of components in state space and the GARCH model orders p

and q) and a corresponding set of appropriate parameters has been iden-

tified through maximum-likelihood, the Kalman filter can be applied very

efficiently to new data without the need of any further time-demanding

computations. This enables the application of this technique to real-time

monitoring of patients during surgery, e.g. it would be possible to monitor

the depth of anaesthesia quantitatively by the time-varying set of variances

of the relevant frequency bands. Also applications to other kinds of data

arising in the neurosciences are conceivable.

EEG time series are usually recorded not from just one electrode, but

from a set of electrodes covering the whole scalp; in principle, the method

which we have proposed in this paper, could be applied independently to

each channel of the data, but it would be desirable to have a modelling ap-

proach capable of building a single common model from all available channels

simultaneously; thereby also the spatial information contained in the posi-

tions of electrodes could be incorporated. The generalisation of the method

to this case will be the subject of future work.
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Appendix

Here we will give the derivation of v̂2
t−j , i.e. the estimator of the noise term

v2
t−j in Equation (3).

Since the state prediction error wt−j is not directly accessible, we derive a

estimator with similar meaning. This estimator is chosen as the expectation

of the product wt−jw
′
t−j , conditional on the data up to time t − j.

Let Kt−j , νt−j and Ωt−j denote the Kalman gain, residual and inverse

covariance matrix of residuals, respectively, at time t − j. These quantities

are obtained naturally through the application of the Kalman filter (for

details see Harvey et al (1989)). Let Var(.) and Cov(.) denote variance and

covariance, respectively. Then we have

v̂2
t−j = E

`
wt−jw

′
t−j |yt−j

´

= Var (wt−j |yt−j) + E (wt−j |yt−j) E (wt−j |yt−j)
′ (4)

The expectation E (wt−j |yt−j) is equal to Kt−jνt−j. The term Var(wt−j |yt−j)

represents the conditional variance of the system noise; it can be expressed

as

Var (wt−j |yt−j)

= Var (wt−j |yt−j−1) − Cov (wt−j , νt−j |yt−j) Var (νt−j |yt−j)
−1 Cov (wt−j , νt−j |yt−j)

′

= Qt−j − Cov (wt−j , νt−j |yt−j) Ωt−jCov (wt−j , νt−j |yt−j)
′
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and the covariance is obtained by

Cov (wt−j , νt−j |yt−j)

= E (wt−jνt−j |yt−j) − E (wt−j |yt−j)E (νt−j |yt−j)

= E
“
wt−j

`
yt−j − Hxt−j|t−j−1

´′ |yt−j

”

= E
“
wt−j

˘
[H (Fxt−j−1 + wt−j) + εt−j ] − H

`
Fxt−j−1|t−j−1

´¯′ |yt−j

”

= E
“
wt−j

˘
HF

`
xt−j−1 − xt−j−1|t−j−1

´¯′ |yt−j

”
+ E

`
wt−jw

′
t−jH

′|yt−j

´
+ E

`
wt−jε

′
t−j |yt−j

´

= Qt−1H
′

since E (νt−j |yt−j) = 0, E
(
wt−j

{
HF

(
xt−j−1 − xt−j−1|t−j−1

)}′ |yt−j

)
= 0,

E
(
wt−jw

′
t−jH

′|yt−j

)
= Qt−1H

′ and E
(
wt−jε

′
t−j |yt−j

)
= 0. By substitut-

ing Var(wt−j |yt−j) and Cov (wt−j , νt−j |yt−j) into Equation (4), we get

v̂2
t−j = Qt−j − Qt−jH

′Ωt−jHQt−j + Kt−jνt−jν
′
t−jK

′
t−j
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Figure 1: (top) An EEG data from the T4 electrode (versus average refer-

ence) of about 20 seconds, covers the transition from awake conscious state

to anaesthesia. (bottom) A moving window spectral estimation of AR(8)

models fitted to 15 segments of data, each of length 256.
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Figure 2: (top 4) Estimated source components of 4 different frequencies,

scaled to the data space. (bottom) Data.
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Figure 3: (top 4) Variance of prediction error of the 4 source components.
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Summary

In this paper, we present a new approach to modelling non-stationarity in

a time series data. We do it by a generalized state space approach. We can

decomposed a given electroencephalogram (EEG) time series into a set of

noise-driven processes, each corresponding to a different frequency band. We

show how the variances of the dynamical noises driving these components

can be made time-dependent by generalising the concept of the Generalized

Autoregressive Conditional Heteroscedastic (GARCH) modelling to the sit-

uation of state-space modelling.

Nonstationarity is modelled by allowing the variances of the driving

noises to change with time, depending on the state prediction error within

the state space model. The method is illustrated by an application to EEG

data recorded during the onset of anaesthesia.
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