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Background and Hypothesis:  Dynamics of the distrib-
uted sets of functionally synchronized brain regions, 
known as large-scale networks, are essential for the 
emotional state and cognitive processes. However, few 
studies were performed to elucidate the aberrant dy-
namics across the large-scale networks across multiple 
psychiatric disorders. In this paper, we aimed to inves-
tigate dynamic aspects of the aberrancy of the causal 
connections among the large-scale networks of the mul-
tiple psychiatric disorders. Study Design:  We applied 
dynamic causal modeling (DCM) to the large-sample 
multi-site dataset with 739 participants from 4 imaging 
sites including 4 different groups, healthy controls, schiz-
ophrenia (SCZ), major depressive disorder (MDD), and 
bipolar disorder (BD), to compare the causal relation-
ships among the large-scale networks, including visual 
network, somatomotor network (SMN), dorsal attention 
network (DAN), salience network (SAN), limbic net-
work (LIN), frontoparietal network, and default mode 

network. Study Results:  DCM showed that the decreased 
self-inhibitory connection of LIN was the common ab-
errant connection pattern across psychiatry disorders. 
Furthermore, increased causal connections from LIN to 
multiple networks, aberrant self-inhibitory connections 
of DAN and SMN, and increased self-inhibitory connec-
tion of SAN were disorder-specific patterns for SCZ, 
MDD, and BD, respectively. Conclusions:  DCM re-
vealed that LIN was the core abnormal network common 
to psychiatric disorders. Furthermore, DCM showed 
disorder-specific abnormal patterns of causal connec-
tions across the 7 networks. Our findings suggested that 
aberrant dynamics among the large-scale networks could 
be a key biomarker for these transdiagnostic psychiatric 
disorders. 
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Introduction

Large-scale functional networks can be defined as dis-
tributed sets of  brain regions synchronically activated 
at rest or during task performance.1–3 They are thought 
to reflect distinct cognitive processes or mental states, 
including visual network (VIN), somatomotor network 
(SMN), dorsal attention network (DAN), salience net-
work (SAN), limbic network (LIN), frontoparietal net-
work (FPN), and default mode network (DMN).1,2,4–8 
An increasing number of  studies have recently been 
conducted to investigate such abnormal large-scale 
functional network structures in psychiatric disorders 
using resting-state functional magnetic resonance im-
aging (rs-fMRI).9–17 In particular, aberrant interactions 
between triple networks, including the DMN (related to 
the inner cognitive process), FPN (related to external 
goal-directed regulation), and SAN (related to salience 
processing) are thought to have important roles in mul-
tiple psychiatric disorders.13,18,19 Aberrant SAN inter-
actions with the DMN and FPN make differentiating 
self-representation and environmental salience proc-
essing challenging in patients with schizophrenia 
(SCZ).10,15 Increased functional connectivity (FC) be-
tween the SAN and DMN and decreased connectivity 
between the DMN and FPN have been observed in pa-
tients with major depressive disorder (MDD)20 and bi-
polar disorder (BD),21 reflecting an abnormal balance 
between self-monitoring processing and external cogni-
tive flexibility in affective disorders.13

However, most studies reporting the aberrancy of 
these networks in psychiatric disorders focused on the 
comparisons between patients with a single psychiatric 
disorder and healthy controls (HCs). Although only a 
limited number of studies directly compared multiple 
psychiatric disorders,22–27 their results were inconsistent. 
For example, while Li et al. found that FPN-DMN 
hyperconnectivity and VIN-DMN hypoconnectivity 
were commonly involved across SCZ, BD, and attention-
deficit hyperactivity disorder using data consisting of a 
total of 212 individuals,27 another study found VIN-FPN 
and SAN-LIN hyperconnectivity, and SAN-DMN and 
DMN-SMN hypoconnectivity across SCZ, MDD, and 
BD upon applying the dynamic FC analysis in a total 
of 610 individuals.22 Thus, further direct comparisons 
across multiple psychiatric disorders are indispensable 
for establishing consistent evidence for the commonality 
and disorder-specific features of neural modules across 
psychiatric disorders.

Furthermore, previous studies only investigated aber-
rant FC between networks whose temporal properties 
were static rather than dynamic. Since whole-brain syn-
chronized neural dynamics are essential for the control 
of functionally remote brain networks28–32 and are related 
to the changes in the emotional state and cognitive pro-
cesses,33,34 revealing the aberrant dynamics of the different 

brain systems across multiple psychiatric disorders is 
important.

Dynamic causal modeling (DCM) has been used to 
investigate the causal relationships among brain net-
works.35,36 While conventional DCM analyses have been 
applied to task-based fMRI studies, new DCM methods 
have been used to estimate the causal relationships 
among the regions of interest (ROIs) for rs-fMRI,37–44 
which cannot be captured by an FC analysis. The DCM 
can also capture the self-inhibitory connection strength 
of each ROI. Several previous studies have investigated 
the abnormal causal relationships across large-scale net-
works in psychiatric disorders by using the DCM method 
for rs-fMRI. Xi et al. demonstrated that patients with 
SCZ had reduced SAN-centered cross-network connec-
tions, compared to HCs.45 Li et al. demonstrated that 
patients with MDD had reduced causal connections 
within the DMN and bidirectional DMN-SAN connec-
tions, compared to HCs.46 However, to the best of our 
knowledge, no study has conducted DCM analyses for 
direct network comparisons across multiple psychiatric 
disorders.

In the current study, we investigated the alteration of 
the dynamic aspects in large-scale networks between psy-
chiatric disorders, including 4 different groups, HC, SCZ, 
BD, and MDD, using large-sample multi-site datasets. 
First, we applied DCM to a large-sample dataset of 739 
participants from 4 imaging sites to estimate the causal 
relationships among the networks. We adopted the para-
metric empirical Bayes (PEB) framework, which makes it 
possible to consider both the mean and uncertainty (var-
iance) of parameter estimation to infer group differences 
using a Bayesian hierarchical model across the param-
eters.47,48 Thus, we investigated both the commonality and 
distinction of aberrancy between HC, SCZ, MDD, and 
BD in 7 large-scale functional networks.

We hypothesized that aberrant dynamics between the 7 
large-scale networks would exist across SCZ, MDD, and 
BD, and that these aberrancies would be associated with 
symptom severity. Based on previous studies reporting 
aberrancies of the triple networks,10,13,15,20,21 we hypothe-
sized: (1) decreased SAN-to-FPN causal connections 
would be common in SCZ, MDD, and BD, (2) SAN-to-
DMN causal connections would be increased in SCZ and 
decreased in MDD and BD, and (3) BD would have more 
decreased SAN-to-DMN and bidirectional DMN-FPN 
connections than would MDD.

Methods

Dataset and Participants

A total of 739 rs-fMRI images were used from the data-
base of the Japanese Strategic Research Program for the 
Promotion of Brain Science DecNef Consortium (https://
bicr.atr.jp/decnefpro/),49,50 and additional brain images were 
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obtained from the Department of Psychiatry, University 
of Tokyo, following the contribution of the database. 
Participants with 3 different disorders and HCs were re-
cruited to the study from 3 sites, which included 4 different 
protocols: The University of Tokyo (UTO) protocol, which 
was held at the University of Tokyo; Kyoto University Tim 
Trio (KUT) and Kyoto University Trio (KTT) protocols, 
which were performed at the Kyoto University; and the 
Center of Innovation at Hiroshima University (COI) pro-
tocol, which was performed at the Hiroshima University. A 
total of 390 HCs from 4 protocols, 143 patients with SCZ 
from 3 protocols, 163 patients with MDD from 3 protocols, 
and 43 patients with BD from one protocol were recruited. 
The demographic characteristics of all the participants 
and MRI parameters of all the sites are summarized in 
table 1, supplementary table S1, and supplementary ma-
terial. All participants provided written informed consent, 
and the study was approved by the Ethics Committees of 
the University of Tokyo and the Faculty of Medicine, the 
University of Tokyo, the Committee on Medical Ethics of 
Kyoto University, and the Ethics Committee of Hiroshima 
University. Each participant underwent rs-fMRI and high-
resolution anatomical MRI. As we eliminated the parti-
cipants whose head movement was greater than 2 mm, 
9 HCs, 4 participants with SCZ, and 8 participants with 
MDD were excluded from our analyses. Furthermore, one 
HC and 3 participants with SCZ were excluded owing to 
the misregistration of the fMRI data into the standard 
space during preprocessing. Thus, 714 participants were 
included in our analysis.

The Positive and Negative Syndrome Scale (PANSS) 
was used to evaluate symptom severity51 for 128 partici-
pants with SCZ (8 participants were missing). The Beck 
Depression Inventory revised version (BDI-II)52 was used 
to assess subjective depressive symptoms in patients with 
MDD at the KUT and COI. As for patients with MDD 
at UTO, the BDI-II was used to assess the subjective de-
pressive symptoms of 50 participants with MDD, and 
the Center for Epidemiologic Studies Depression Scale53 
was used to assess the depressive symptoms of 22 partici-
pants with MDD (one and 4 patients were missing in the 
BDI-II and Center for Epidemiologic Studies Depression 

Scale, respectively). Center for Epidemiologic Studies 
Depression Scale scores were transformed into BDI-II 
scores, based on a previous study.54 The BDI-II was also 
used to assess the depressive symptoms of 15 partici-
pants with MDD using the KUT protocol. The Young 
Mania Rating Scale (YMRS)55 was used to assess manic 
symptom severity for the 43 participants with BD.

At the 3 sites (UTO, KUT, and KTT protocols), the 
medication equivalent doses were estimated as follows: 
Antipsychotics using chlorpromazine (CPZ) equivalent 
dose for the patients with SCZ, MDD, and BD; and anti-
depressants using imipramine (IMP) equivalent dose for 
the patients with MDD and BD. Since we only obtained 
information on whether the patients took benzodiazep-
ines, we used benzodiazepine as a binarized variable. 
Since we did not have any data for medication informa-
tion from the COI, we excluded the participants in COI 
from the analyses considering the effect of medication 
and clinical severity.

Preprocessing of rs-fMRI

fMRI data were preprocessed using the FMRIB soft-
ware library (FSL version 6.0.3; http://www.fmrib.ox.ac.
uk/fsl/). Skull stripping of the structural images was per-
formed using Brain Extraction Tool.56 We discarded the 
first 4 functional volumes for the datasets from UTO, 
KUT, and COI, and the first 5 volumes for the dataset 
from KTT, which corresponded to 10 seconds of scanning. 
Next, we applied head motion correction by realigning 
the time series to the first volume using MCFLIRT,57 field-
map-based distortion correction, slice timing correction, 
and spatial smoothing with a full-width half-maximum of 
5 mm with SUSAN.58 Registration was performed using 
FLIRT57 and FNIRT.59 Each functional image was regis-
tered to the participant’s high-resolution brain-extracted 
structural image and the standard Montreal Neurological 
Institute 2 mm brain. Patients with head motion greater 
than 2 mm were excluded. We also examined the group 
differences in the translation and rotation of head move-
ments.60 The details are described in supplementary mate-
rial. We compared these parameters (analysis of variance, 

Table 1.  Demographic Characteristics of the Participants

HC SCZ MDD BD

N M/F Age (y) N M/F Age (y) N M/F Age (y) N M/F Age (y)

UTO 71 27/44 39.8 ± 9.3 52 29/23 29.7 ± 9.8 77 41/36 39.0 ± 12.1 43 25/18 33.8 ± 11.5
KTT 75 48/27 28.9 ± 9.1 46 25/21 38.2 ± 9.6 0 — — 0 — —
KUT 159 93/66 36.5 ± 13.6 45 21/24 41.4 ± 10.8 16 10/6 42.6 ± 12.5 0 — —
COI 85 29/56 44.6 ± 9.4 0 — — 70 31/39 45.0 ± 12.5 0 — —

Note: HC, healthy controls; SCZ, schizophrenia; MDD, major depressive disorder; BD, bipolar disorder; M, male; F, female; UTO, 
The University of  Tokyo; KTT, Kyoto University Trio; KUT, Kyoto University Tim Trio; COI, Center of  Innovation at Hiroshima 
University.
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P < .05; supplementary table 3) and added them as nui-
sance regressors in the group comparisons of the DCM.

Region Specification for the DCM Analysis

We classified the whole cortical brain regions into 7 func-
tionally different brain networks2 (https://surfer.nmr.
mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011): 
VIN, SMN, DAN, SAN, LIN, FPN, and DMN (figure 1).

Dynamic Causal Modeling

We employed spectral DCM implemented in SPM12 
(version R7497, http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/) for preprocessed rs-fMRI data. DCM employs 
a neuronally plausible model for the observed blood-
oxygen-level-dependent signals and allows the estima-
tion of  causal relationships between the different nodes 
of  the network. Details of  DCM are in supplementary 
information. The blood-oxygen-level-dependent time 
series of  the ROIs were extracted, and non-neural signals 
of  the white matter and cerebrospinal fluid and 6 head 
motion parameters were regressed out. We used a fully 
connected model with bidirectional connections between 
any pair of  ROIs for each participant. We estimated 49 
free parameters because the fully connected model con-
tained 7 ROIs.

PEB for Group DCM

We used a standard PEB analysis process to conduct a 
group analysis and Bayes model averaging.47,48 PEB took 
participant-specific connectivity parameters estimated 

from the spectral DCM to the group level, where they 
were modeled using a general linear model under the 
Bayesian hierarchical framework. Thus, the estimated 
connection strengths and their uncertainties were con-
sidered from the subject to the group level in the group 
analysis. The details of these analyses are in supplemen-
tary material.

We first compared the causal connections across the 4 
groups under the PEB framework (SCZ vs. HC, MDD vs. 
HC, BD vs. HC, MDD vs. SCZ, BD vs. SCZ, and BD vs. 
MDD). We added age, sex, site, and translation and rotation 
parameters as nuisance covariates to the models. Thereafter, 
the effects of clinical severity and medication on the causal 
connections were tested for each psychiatric disorder group, 
including age, sex, and site as nuisance covariates in the 
models. We did not have any data on the medication effects 
for the patients with COI; therefore, we conducted the ana-
lyses using participants at 3 sites: UTO, KTT, and KUT 
(without COI). We focused on the connection parameters 
with abnormal connection values in psychiatric disorders. 
The effects of the PANSS, CPZ, and IMP on SCZ were as-
sessed. The effects of BDI-II scores, CPZ dose, and IMP 
dose on MDD were assessed. The effects of the YMRS, 
CPZ, and IMP were assessed for BD. We adopted the def-
inition of “strong evidence” by thresholding the effects at 
95% posterior probability (PP).61 The details of these ana-
lyses are in supplementary material.

Results

Group Comparison of the Causal Connections Across 
HCs, and Patients With SCZ, MDD, and BD

Average DCM parameters for each group are shown in 
figure 2. SCZ had increased causal connections from 
LIN to multiple networks (ie, VIN, SMN, DAN, SAN, 
and FPN), increased self-inhibitory connection of 
SMN, and decreased self-connection of  LIN and DMN, 
compared to HCs (PP > .95; figure 3). MDD showed 
the increased self-inhibitory connection of  SMN, de-
creased FPN-to-VIN connection, and decreased self-
connection of  DAN and LIN, compared to HCs (PP > 
.95). BD showed increased self-connection of  SAN and 
decreased self-connection of  LIN, compared to HCs 
(PP > .95).

The comparison between the disease groups showed 
MDD had increased SMN-to-VIN connection, increased 
self-connection of DMN, decreased connection from 
LIN to multiple networks (ie, VIN, SMN, DAN, SAN, 
and FPN), and from FPN to SMN, and decreased self-
connection of DAN and LIN, compared to SCZ (PP > 
.95). BD showed increased SMN-to-VIN connections, in-
creased self-connection of SAN, decreased LIN-to-SMN 
connections, and decreased self-connection of LIN, com-
pared to SCZ (PP > 0.95). BD showed increased self-
connection of SAN and decreased self-connection of 
LIN, compared to MDD (PP > .95).

Fig. 1.  Seven large-scale functional networks defined by Yeo’s 
atlas. The whole cortical brain regions were parcellated into 7 
functionally different brain networks, VIN, SMN, DAN, SAN, 
LIN, FPN, and DMN.
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Associations Between the DCM Connection 
Parameters, Clinical Severity, and Medication Effects

Self-connection of  DMN was positively associated 
and self-connection of  LIN was negatively associ-
ated with the PANSS positive symptom scores in SCZ 
(figure 4). SMN-to-LIN connection was negatively as-
sociated with the PANSS negative symptom scores in 
SCZ. Furthermore, SMN-to-VIN connection was pos-
itively associated and VIN-to-DMN connection and 

self-connection of  DMN were negatively associated 
with the PANSS general psychopathology scores in 
SCZ. In the MDD group, self-connection of  DAN was 
positively associated with the BDI-II scores. In the BD 
group, self-connection of  SAN was positively associated 
with the YMRS scores.

We found a negative association between CPZ and the 
self-inhibitory connection of LIN in SCZ (supplementary 
figure 1). We also found a negative relationship between 

Fig. 2.  Average causal connection for each group. Average causal connection parameters for all the connections among the 7 networks 
for HC, SCZ, MDD, and BD are shown. Connection values whose posterior probabilities are larger than 95% are depicted in color. 
Abbreviations: HC, healthy controls; SCZ, schizophrenia; MDD, major depressive disorder; BD, bipolar disorder; VIN, visual network; 
SMN, somatomotor network; DAN, dorsal attention network; SAN, salience network; LIN, limbic network; FPN, frontoparietal 
network; DMN, default mode network.

D
ow

nloaded from
 https://academ

ic.oup.com
/schizophreniabulletin/advance-article/doi/10.1093/schbul/sbad022/7074397 by atrlibrary user on 18 M

ay 2023

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad022#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbad022#supplementary-data


Page 6 of 11

T. Ishida et al

IMP equivalent and VIN self-connection in patients with 
MDD and BD.

Discussion

We investigated causal relationships among the 7 large-
scale functional networks across SCZ, MDD, and BD 
by using large-sample multi-site datasets. DCM showed 
that decreased self-inhibitory connection of LIN was a 
common aberrant pattern across psychiatric disorders. 
Each disorder group had a specific pattern: (1) increased 
LIN-to-multiple-network connections in SCZ, (2) aber-
rant self-inhibitory connections of DAN and SMN and 
decreased FPN-to-VIN connections in MDD, and (3) in-
creased self-inhibitory connection of SAN in BD. These 
aberrant connections were also associated with the clin-
ical symptoms.

The strength of this study was that it investigated the 
aberrancy of the dynamic aspects of the 7 large-scale 
networks across the multiple psychiatric disorders with 
DCM by using large-sample multi-site datasets. To the 
best of our knowledge, our team is the first to demon-
strate that the decreased self-inhibitory connection of 
LIN was a common aberrant network feature across the 

multiple psychiatric disorders, which could not be dem-
onstrated by other previous studies investigating aberrant 
network-connection patterns among the transdiagnostic 
psychiatric disorders.17,22,27,62 This finding suggested that 
DCM would provide new insights into the pathophysi-
ological mechanism of various psychiatric disorders, 
which could not be captured by other studies applying 
conventional FC analyses.17,22,27,62

The common and disorder-specific features found in 
previous studies and in the present study were incon-
sistent. Baker et al. showed that graded disruptions in 
FPN were associated with the presence of affective and 
psychotic illnesses,62 whereas another study showed ab-
errant SAN-FPN and DMN-FPN connectivity was a 
common feature across the transdiagnostic psychiatric 
disorders.17 Several factors could explain the inconsist-
encies between the findings of the previous studies and 
our study. First, sample sizes were different across the 
studies. Future studies with much larger sample sizes are 
needed. Second, several studies investigated different psy-
chiatric disorders.17,27 For example, Brandl et al.63 found 
no common features among the large-scale networks 
across MDD, anxiety disorder, and chronic pain, whereas 
we found that self-connection of LIN was the common 

Fig. 3.  Group comparison of the causal connection parameters across HC, SCZ, MDD, and BD. The connection parameters whose 
posterior probability is more than .95 (strong evidence) are shown. Edges colored in yellow to red/blue mean that the causal connection is 
larger/smaller in SCZ than in HC, in MDD than in HC, in BD than in HC, in MDD than in SCZ, in BD than in SCZ, and in BD than in 
MDD, respectively (from left to right in the top panel and in the bottom panel) (for color figure refer online version).
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feature across SCZ, MDD, and BD. This inconsistency 
may be because the dimension of the continuum spec-
trum across MDD, anxiety disorder, and chronic pain dif-
fered from that across MDD, SCZ, and BD. Considering 

the dimension of the continuum spectrum is important 
for exploring aberrant network connections across var-
ious psychiatric disorders. Third, previous studies have 
focused on triple-network relationships (DMN, FPN, 

Fig. 4.  Associations between the causal connection parameters and symptom severity. The connections which have strong evidence (PP 
> .95) are depicted in color. Those connections that have associations with the clinical ratings and abnormal connections in psychiatric 
disorders are enclosed by red squares (for color figure refer online version). Scatter plots between those connections and clinical ratings 
are also shown. Abbreviations: the Positive and Negative Syndrome Scale; BDI-II, the Beck Depression Inventory revised version; 
YMRS, the Young Mania Rating Scale; PP, posterior probability.
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and SAL), without considering the effects of other func-
tional networks.13,20,45

DCM demonstrated that the decreased self-inhibitory 
connection of LIN was the common aberrant connection 
pattern across psychiatric disorders. The LIN, defined 
in Yeo’s atlas,2 includes the orbitofrontal and temporal 
cortices. The orbitofrontal cortex is associated with the 
affective evaluation of rewards and punishments,64 expec-
tations, motivation, and decision-making behavior.65,66 The 
temporal cortex is involved in processing sensory input,67 
memory,68 and language recognition.69 Thus, functional 
impairment of LIN results in multiple psychopatholog-
ical mechanisms across multiple psychiatric disorders. In 
actuality, abnormal network structures in LIN and aber-
rant FC associated with the LIN were consistently found 
in SCZ70–74 and associated with the severity of psychosis 
or hallucination.75,76 Our results also showed that the self-
connection of LIN had a negative correlation with the 
PANSS positive symptom scores in patients with SCZ. 
Abnormal structural and functional frontotemporal con-
nectivity, including LIN, has been reported in MDD77–79 
and is correlated with symptom severity.79 Abnormal net-
work structure and low-frequency amplitude fluctuations 
in the LIN have been shown in BD80–82 in association with 
mood dysregulation.81 Furthermore, the self-inhibitory 
connection of LIN was decreased in MDD and BD, than 
in SCZ. This finding indicated that the impairment of the 
self-inhibitory connection of LIN was directly linked to 
mood dysregulation,83 which leads to the affective dis-
order.81,83 DCM showed that LIN took more excitatory 
influences on VIN, SMN, DAN, SAN, and FPN in SCZ, 
thereby inducing aberrant FC among these distributed 
networks. This finding could partly explain the functional 
hypoconnectivity among LIN, SAN, FPN, and DMN 
as SCZ-specific patterns, as revealed by previous meta-
analysis findings.84 Furthermore, SCZ had an increased 
causal connection from LIN to other networks, com-
pared to MDD, while SCZ had an increased causal con-
nection from LIN to only SMN compared to BD. This 
finding suggested that BD is closer to SCZ than to MDD 
on the continuum spectrum of psychiatric disorders and 
that SCZ is at one end of the spectrum.85

MDD had reduced self-connection of DAN and FPN-
to-VIN connection and increased self-connection of 
SMN, compared to HC. Previous studies found impaired 
visual and prefrontal preprocessing during the control of 
visual information selection and maintenance in MDD.86 
Furthermore, compared to HCs, patients with MDD 
have decreased nodal degrees in DAN and SMN, which 
are involved in cognitive executive processes, emotional 
processing, and sensory/motor functions in MDD.87 This 
finding could also be strengthened by our findings, which 
showed positive associations between BDI-II scores and 
self-inhibitory connections of DAN. Patients with MDD 
showed no different self-connections of DAN, compared 
to patients with BD, which suggested that BD was closer 

to MDD than to HC, or SCZ in externally oriented at-
tention processing. In contrast, BD had an increased 
self-inhibitory connection of SAN compared to HCs, 
SCZ, and MDD. Reduced within-connectivity of SAN 
has been consistently reported in patients with BD,21,85,88,89 
which could be explained by the stronger self-inhibitory 
connection of SAN. We also found that self-inhibitory 
effects on SAN were associated with the YMRS scores in 
BD, thereby suggesting that SAN has an important role 
in mood regulation.

The current study has several limitations. First, the 
sample size of patients with BD was smaller than that 
of the other groups. Second, we had limited medication 
data for the datasets and did not test for nonmedicated 
patients. Third, we found that the DCM parameter of the 
self-connection of LIN was negatively associated with 
the CPZ dose in SCZ and the IMP dose in MDD and 
BD. Furthermore, we could not estimate the accurate ef-
fects of benzodiazepines on DCM parameters because 
we only obtained information on whether the patients 
took benzodiazepines. Therefore, the difference in the 
DCM parameter of self-connection of LIN between HC, 
and patients with SCZ, MDD, and BD may be because 
of medication effects. Fourth, our spatial resolution was 
quite low because each network adopted by the 7-net-
work Yeo parcellation consisted of several smaller func-
tionally different regions. Fifth, we did not have any data 
of the illness duration or data of the clinical states (ie, 
acute vs. remitted); therefore, we did not estimate their 
effects on the causal connections.

DCM has revealed that LIN is a common abnormal 
network in psychiatric disorders. Furthermore, DCM 
showed disorder-specific abnormal causal relation-
ship patterns across 7 networks. Thus, DCM is useful 
for elucidating the dynamic aspects of the aberrancy of 
causal relationships among large-scale networks of mul-
tiple psychiatric disorders.
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