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Resting‑state functional 
connectivity disruption 
between the left and right pallidum 
as a biomarker for subthreshold 
depression
Yosuke Sato 1, Go Okada 1, Satoshi Yokoyama 1, Naho Ichikawa 1,2, Masahiro Takamura 3,4, 
Yuki Mitsuyama 1, Ayaka Shimizu 1, Eri Itai 1, Hotaka Shinzato 1, Mitsuo Kawato 5, 
Noriaki Yahata 6 & Yasumasa Okamoto 1*

Although the identification of late adolescents with subthreshold depression (StD) may provide 
a basis for developing effective interventions that could lead to a reduction in the prevalence of 
StD and prevent the development of major depressive disorder, knowledge about the neural basis 
of StD remains limited. The purpose of this study was to develop a generalizable classifier for StD 
and to shed light on the underlying neural mechanisms of StD in late adolescents. Resting‑state 
functional magnetic resonance imaging data of 91 individuals (30 StD subjects, 61 healthy controls) 
were included to build an StD classifier, and eight functional connections were selected by using the 
combination of two machine learning algorithms. We applied this biomarker to an independent cohort 
(n = 43) and confirmed that it showed generalization performance (area under the curve = 0.84/0.75 for 
the training/test datasets). Moreover, the most important functional connection was between the left 
and right pallidum, which may be related to clinically important dysfunctions in subjects with StD such 
as anhedonia and hyposensitivity to rewards. Investigation of whether modulation of the identified 
functional connections can be an effective treatment for StD may be an important topic of future 
research.

Recently, there has been growing interest in subthreshold depression (StD)1, which is defined as clinically relevant 
depressive symptoms not meeting the criteria for full-blown major depressive disorder (MDD)2. StD is highly 
prevalent among university students  worldwide3 and its prevalence seems to be  increasing4. Late adolescent 
university students are reportedly vulnerable to depression and  anxiety5–7, have a higher rate of depression com-
pared to the general  population8, and their depressive symptoms may be related to an increased risk for suicidal 
ideation and suicide  attempts9. StD is associated with severe functional impairments and has a negative impact 
on the quality of life. In addition, StD is a risk factor for developing  MDD6,10. Hence, the identification of late 
adolescents with StD may provide a basis for developing effective interventions that could lead to a reduction in 
the prevalence of StD and prevent the development of MDD. However, knowledge about the neural basis of StD 
remains limited, which makes it challenging to develop effective biomarkers and  treatments11.

Some studies have evaluated impaired brain regions and abnormal patterns of brain connectivity to develop 
novel biomarkers for StD using resting-state functional magnetic resonance imaging (rs-fMRI)11–18. In early 
studies, it was reported that spontaneous neuronal activity, as measured by the amplitude of low-frequency 
fluctuations, is altered, that resting-state functional connections (FCs) are impaired, and that subcortical degree 
centrality is decreased and cortical degree centrality is increased in subjects with  StD12,13,16. In studies pertaining 
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to brain networks, it was suggested that FCs between subregions of the anterior cingulate cortex are altered, 
that the FCs of the habenula within the default model network are increased, and that the FCs within salience 
networks are diminished in individuals with  StD11,17. Recently, beyond the group-level analyses used in these 
previous studies, a data-driven approach using machine learning, which identifies phenotypes in a way that is 
clinically useful and can be applied to clinical diagnosis or prognosis, has gained  attention19. In a recent inves-
tigation, by using the Support Vector Machine, which has been used frequently to identify imaging biomarkers 
in some  diseases20, connectome-based biomarkers predicting StD associated with regions of the thalamus were 
identified, but with an insufficient generalization  capability21. If the generalization capability to independent data 
is not sufficient, it is difficult to discuss the pathophysiology of the target disease through FC features selected 
by machine learning. Yahata et al.22 developed an rs-fMRI-based classifier for autism spectrum disorder with 
generalization capability by combining two machine learning algorithms, L1-regularized sparse canonical cor-
relation analysis (L1-SCCA)23 and sparse logistic regression (SLR)24, to overcome the two major difficulties 
causing poor generalization performance, i.e., over-fitting and nuisance variables, and additionally by testing 
the classifier in an independent validation  cohort22. By using the same method, we also developed a classifier 
for MDD with melancholic features that were generalized to an independent cohort and extracted critically 
important  FCs25. To our knowledge, no study has attempted to identify an rs-fMRI-based biomarker for StD and 
confirmed its generalization capability. Therefore, the purpose of the present study was to develop a generalizable 
classifier for StD in late adolescents by using the combination of two machine learning algorithms, L1-SCCA 
and  SLR22,25. Another purpose of this study was to shed light on the underlying neural mechanisms of StD by 
using the critically important extracted FCs. In late adolescents, the StD group has been characterized only by 
hyposensitivity to environmental rewards in previous studies, whereas the MDD group has been characterized 
by a higher frequency of avoidance and hyposensitivity to environmental rewards compared with the non-
depression  group26. Moreover, anhedonia is one of the most common symptoms of  StD27 and, in adolescents, 
predicts adult  MDD28. In previous studies, reward dysfunction was observed in depression patients. Pizzagalli 
et al. found that MDD patients showed significantly weaker responses to gains in the  striatum29. The abnormal 
resting-state FCs of the ventral striatum, a key region in the reward network, was observed in StD  subjects30. 
Thus, we examined if the identified FCs in the StD classifier were associated with anhedonia and reward respon-
siveness in the present study.

Results
Highly accurate classifier for StD and generalization to an independent cohort. A classifier was 
constructed based on the FCs of each subject to distinguish StD subjects from HCs. The classification was first 
carried out by feature-selection from all 9316 FCs with L1-SCCA and SLR. Then, for this classifier, the weighted 
linear summation (or linear discriminant function) of the identified FCs was computed. This algorithm was 
applied to the training dataset (n = 91, Table 1), and then a classification accuracy of 80% (area under the curve 
0.84, sensitivity 70%, specificity 85%; p = 0.001 with a permutation test, Supplementary Fig. S1a,c) was revealed 
by the leave-one-out cross validation (LOOCV) procedure. Next, the classifier was tested on an independent 
validation cohort (n = 43), and then a classification accuracy of 79% (area under the curve 0.75, sensitivity 84%, 
specificity 72%; p = 0.001 with a permutation test, Supplementary Fig. S1b,d) was revealed.

FCs in the classifier. Then, the neural basis of the StD classifier was investigated. The sparse classification 
algorithm allowed the survival of eight FCs from 29 FCs that were selected at least once throughout the LOOCV 
procedure based on their contribution to the classifier (Table 2 and Fig. 1a). The robustness and stability of the 
detected FCs throughout the cross-validation procedure are shown in Fig. 1b. Furthermore, we confirmed that 
the weights of the eight identified FCs across the LOOCV procedure were significantly nonzero (two-sided 
Wilcoxon signed rank test, p < 0.001), indicating their important contribution to the classifier. The contribu-
tion index of individual FCs to the corresponding connection, which was defined by the difference of each FC 
between StD subjects and HCs multiplied by the classifier weight, is plotted in Fig. 1c. We found that FC#1 (right 
pallidum to left pallidum) between inter-hemispheric regions showed the most outstanding contribution of 
the eight FCs. We also found that only FC#1, out of 9316 FCs, was identified as having a significant difference 
between StD and HCs by using conventional between-group comparison (two-sample t test with Bonfferoni 
correction, p < 0.05/9316).

Table 1.  Demographic and clinical information of the participants used to construct the subthreshold 
depression (StD) classifier. The differences between StD subjects and healthy controls were tested by a two-
tailed t test (for age and BDI-II) or the chi-squared test (for sex). ***p < 0.001. BDI-II Beck’s Depression 
Inventory-II, NA not applicable, SD standard deviation.

Training dataset Test dataset

StD Healthy controls p-value StD Healthy controls p-value

No. of participants 30 61 NA 16 27 NA

Sex, male/female 19/11 32/29 0.326 10/6 18/9 0.782

Age (years), mean (SD) 18.2 (0.4) 18.4 (0.5) 0.054 18.6 (0.7) 18.5 (0.6) 0.921

BDI-II, mean (SD) 16.8 (3.5) 3.0 (1.9) 0.000*** 20 (5.0) 3 (2.2) 0.000***
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Table 2.  Characteristics of the eight interregional functional connections (FCs) used in the subthreshold 
depression (StD) classifier. The mean functional correlation values for StD (rStD) and healthy controls (rHC) 
are presented for individual FCs. Since the StD group was the positive class in the classification of the StD and 
HC populations, the sign of weight was positive when rStD > rHC, whereas it was negative when rStD < rHC. 
Contribution was computed as (rStD − rHC) × weight. BA Brodmann area.

ID Name Lat BrainVISA Sulci Atlas (sulcus) BA rStD rHC Weight Contribution

1
Pallidum R Pallidum –

0.344 0.513 − 3.41 0.578
Pallidum L Pallidum –

2
Fusiform gyrus R Internal occipito-temporal lateral sulcus 37

0.147 0.341 − 1.90 0.370
Cuneus R Cuneal sulcus 18

3
Precuneus R Transverse parietal sulcus 7

− 0.200 − 0.287 2.51 0.217
Triangular part of the inferior frontal gyrus L Anterior inferior frontal sulcus 45

4
Middle occipital gyrus L Lobe occipital 19

− 0.149 − 0.038 − 1.91 0.213
Rolandic operculum L Anterior sub-central ramus of the lateral fissure 48

5
Caudate R Caudate –

− 0.058 0.044 − 1.67 0.172
Supramarginal gyrus R Anterior terminal ascending branch of the superior temporal 

sulcus 40

6
Supplementary motor area R Median frontal sulcus 6

0.359 0.467 − 1.46 0.157
Superior frontal gyrus L Median frontal sulcus 9

7
Angular gyrus L Anterior terminal ascending branch of the superior temporal 

sulcus 39
− 0.153 − 0.297 0.88 0.127

Superior parietal gyrus R Superior parietal sulcus 7

8
Middle frontal gyrus L Intermediate frontal sulcus 46

− 0.061 0.016 − 1.33 0.102
Inferior parietal gyrus L Superior postcentral intraparietal superior sulcus 40

Figure 1.  The eight identified functional connections (FCs) for the subthreshold depression (StD) classifier. 
(a) The 16 brain regions connected by the eight FCs of the StD biomarker (rendered with: MRIcroGL 64-bit, 
June 12, 2015, https:// www. nitrc. org/ proje cts/ mricr ogl). (b) Contribution of individual FCs to the StD 
biomarker. The cumulative absolute weights are shown for all 9316 FCs, of which 29 FCs were selected at least 
once throughout the leave-one-out cross validation process. The eight FCs identified through the StD classifier 
were derived from a key subset of the 29 FCs (the red columns represent the eight identified FCs, and the gray 
columns represent the remaining 21 FCs). (c) Contribution of each of the eight FCs to the StD biomarker.

https://www.nitrc.org/projects/mricrogl
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Association of important FCs with anhedonia and reward responsiveness. We evaluated the rel-
evance of the important FCs to anhedonia and reward responsiveness, which are features of  StD31. FC#1 and 
FC#2 had significant negative correlations with the BDI anhedonic subscore. FC#1 and FC#6 had significant 
positive correlations with the EROS score. Of the eight FCs, only FC#1 had significant correlations with the BDI 
anhedonic subscore and EROS score (Table 3, Fig. 2a,b). Also, similar results were obtained in the sum of train-
ing and test dataset (Supplementary Table S3).

Discussion
Herein, we generated a neuroimaging-based biomarker for StD of which the generalization capability was con-
firmed in an independent validation cohort. Furthermore, our findings suggest that the FC between the left and 
right pallidum, which was the most important of the eight FCs identified for this classifier, may be associated 
with clinically important dysfunctions in subjects with StD such as hyposensitivity to rewards and anhedonia.

In recent years, some impaired brain regions and abnormal patterns of brain connectivity have been evalu-
ated in subjects with StD by using rs-fMRI11–18. Unfortunately, these findings could not be applied to direct 
diagnosis, but they are useful for the identification of disease biomarkers associated with the dysfunctions 
observed in StD. This is because the individual predictive ability of these biomarkers was not evaluated, even 
though they were statistically significant at the group level. Following this, there has been increasing interest in 
using machine learning algorithms in order to predict phenotypes in a way that allows characterization at the 
level of the individual beyond group level  analyses19. However, also in these studies, there were some limitations 
regarding the generalizability and feasibility of the identified markers, for example, there were too many pre-
dictive FCs to explain StD  individually21. Yahata et al.22 overcame these limitations by combining two machine 
learning algorithms, L1-SCCA and SLR, and identified rs-fMRI-based classifiers for autism spectrum disorder 
with high  generalization22. This technique was also used successfully to extract a few FCs related only to the core 
characteristics of melancholic  MDD25. By using the same approach, we developed a generalizable rs-fMRI-based 

Table 3.  Relationship between each functional correlation value and clinical score. Clinical scores associated 
with anhedonia (BDI anhedonic subscore and EROS). *Bonferroni-adjusted significance level of p < 0.05/8 
(= 0.006). BDI Beck’s Depression Inventory, EROS Environmental Reward Observation Scale, FC functional 
connection.

Identified FCs

BDI anhedonic subscore EROS

r p r p

FC#1 − 0.469 0.000* 0.450 0.000*

FC#2 − 0.321 0.002* 0.282 0.007

FC#3 0.287 0.006 − 0.119 0.261

FC#4 − 0.264 0.011 0.183 0.083

FC#5 − 0.241 0.021 0.185 0.079

FC#6 − 0.256 0.014 0.383 0.000*

FC#7 0.199 0.059 − 0.217 0.039

FC#8 − 0.156 0.141 0.147 0.164

Figure 2.  A scatter plot of correlations between the identified functional connections (FCs) and clinical scores. 
(a) FC#1 shows a negative correlation with the BDI anhedonic subscore (r = − 0.469, p < 0.006*). (b) FC#1 
shows a positive correlation with EROS score (r = 0.450, p < 0.006*). *Bonferroni-adjusted significance level of 
p < 0.05/8 (= 0.006). BDI Beck’s Depression Inventory, EROS Environmental Reward Observation Scale.
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biomarker for StD tested on an independent validation cohort. The test data were acquired using a Siemens Verio 
scanner that was upgraded to a Skyra scanner including a retrofit of hardware and software. Imaging was also 
performed with a new protocol that had higher spatial and temporal resolution than used for the discovery data 
(Supplementary Table S1). Scanner  specifications32 and imaging  parameters33 are known to affect MRI data. 
Therefore, it is considered to be a great advantage of our biomarker that it showed generalization performance 
for different machines and different protocols without special harmonization.

Our findings demonstrated that FC#1 (right pallidum to left pallidum), which was the most important 
of the eight FCs identified for this classifier, may be associated with the clinically important dysfunctions in 
subjects with StD such as hyposensitivity to rewards and anhedonia. Of the eight identified FCs, FC#1 showed 
the strongest negative correlation with the BDI anhedonic subscore and strongest positive correlation with the 
EROS score. In addition, both of these correlations were still significant after multiple comparison corrections 
only for FC#1. These results suggest that the lower FC between the right and left pallidum may be relevant to 
hyposensitivity to rewards and anhedonia in subjects with StD. It is difficult to interpret that the FC between 
bilateral pallidum was not selected as an important feature to discriminate between MDD and healthy subjects 
in our previous  study25. To verify whether the key findings of this study targeting StD also apply in MDD, we 
analyzed previous data (92 patients with MDD vs. 92 HCs from Ichikawa et al.25) focusing on the FC between 
bilateral pallidum. As a result, there was a trend toward decreased FC between bilateral pallidum in MDD 
compared to HCs, which was not significant (p = 0.067). It is unclear why the decreased FC between bilateral 
pallidum is more characteristic of StD than MDD, but it is possible that the balance of FC changes after onset. 
This issue needs further clarification in future longitudinal cohort studies.

The right and left pallidum are connected via the anterior commissure through the lateral nucleus of the 
globus  pallidus34,35. The ventral pallidum reportedly plays a crucial role in  motivation36. In rats and monkeys, 
electrical stimulation within the ventral pallidum supports self-stimulation behavior as a reward in and of 
 itself37,38. In addition, in humans, activation in the ventral pallidum is associated with receiving food and 
money as a  reward39,40. It has been suggested that the ventral pallidum is deeply involved in the regulation of 
motor action based on reward  expectation41. Classically, lesions of the globus pallidus are reportedly related to 
anhedonia, decreased social interactions, and flattened  affect42,43. Given that late adolescents with StD have been 
characterized by reward system  dysfunction26, our findings suggest that the inter-hemispheric connectivity of the 
pallidum may be especially important in this process. Indeed, the volume of the bilateral pallidum is reportedly 
decreased and has a negative association with the severity of depressive symptoms in young StD  subjects44.

Although the FC between the left and right pallidum was identified as a particularly important biomarker of 
StD, the other seven FCs contained areas in which abnormalities have been suggested in depression. In particular, 
the FC between the precuneus and the left triangular part of the inferior frontal gyrus is interesting because it 
is in the same direction as the connection between the precuneus and left dorsolateral prefrontal cortex, which 
was identified by Ichikawa et al. as an important connection in the biomarker for melancholic  MDD25. Further 
research is needed in longitudinal studies, such as which connections are involved in the development of MDD.

There are four limitations related to the present study. First, because our study was cross-sectional, we 
cannot determine if these observations are the cause or result of StD. Additionally, the relatively mild depressive 
symptoms of StD subjects can change easily over time. Future longitudinal studies are required to address this 
question and will help further our understanding of the neural basis of StD. Second, the sample size of the 
current study was relatively small. The performance of a classifier is directly influenced by sample size, with 
which prediction accuracy may  decrease45. Thus, a larger sample size is needed to validate the current findings 
further. Third, there were some differences in head motion between the two groups in the training dataset 
(Supplementary Table S2) that may influence the classifier performance, although six head motion parameters 
were linearly regressed out. Motion artifacts contribute substantially to the rs-fMRI signal and are not fully 
countered by motion  regressions58. Some efforts may have to be directed at preventing head motion, such as 
behavioral or physical  interventions46. Moreover, attention should be paid to the neurobiological basis of head 
motion as identified by Zeng et al.47. Differentiating true disease effects from the correlates of motion tendency 
is critical for using connectivity markers in the clinical area because correlates of motion may reduce specificity 
of biomarkers. Fourth, the cerebellum was not incorporated in the construction of the classifier because it was 
truncated in many participants’ images. Cerebellar abnormalities have been the focus of increasing concern 
recently in  depression48. There are several studies on StD subjects from rs-fMRI that has identified aberrant 
cerebellar  activity12,13.

In summary, this study generated a generalizable rs-fMRI-based classifier for the accurate prediction of StD 
for the first time. For the StD classifier, the FC between the left and right pallidum was the most important of eight 
FCs identified using sparse classification algorithms, which may be related to clinically important dysfunctions 
of subjects with StD such as anhedonia and hyposensitivity to rewards. Investigation of whether modulation of 
the identified FCs can be an effective treatment for StD may be an important future research topic.

Methods
Participants. Participants were enrolled from 18 to 19-year-old first-year students attending Hiroshima 
University, Japan. Beck’s Depression Inventory-II (BDI-II)49 was administered to the participants to score 
depressive severity. A BDI-II score of 13 is a suggested cutoff point to detect depression in college  students50,51; 
therefore, in the present study, StD was defined as a score of ≥ 13 points on the BDI-II. Participants that met the 
following criteria after completing the Japanese version of the Composite International Diagnostic  Interview52 
were excluded from this study: major depressive episode during the past year, a lifetime history of bipolar disor-
der, taking psychopharmacological or psychological treatment within the past year, possibility of acute suicide 
attempts, difficulty in understanding the purpose of the study, or difficulty in completing the self-report scales 
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due to a serious mental condition or severe physical disease. In this way, a total of 91 subjects were enlisted in the 
rs-fMRI experiments, including 30 StD subjects with BDI-II scores from 13 to 27 (19 men and 11 women) and 
61 age-, sex-, and education-matched healthy controls (HCs) with BDI-II scores < 8 (32 men and 29 women). 
Demographic data for the participants are presented in Table 1. This study was approved by the ethics committee 
of Hiroshima University, and all participants provided their written informed consent after the study was com-
pletely described to each participant. In addition, we confirm that all procedures were carried out in accordance 
with relevant guidelines and regulations.

BDI‑II. The BDI-II is a widely-used instrument for measuring depression and depressive symptoms and con-
sists of 21 self-report items that are rated on a 4-point scale ranging from 0 to 3. The Japanese version of the 
BDI-II has shown good validity and  reliability48. Additionally, anhedonia was assessed by the BDI-II anhedonic 
subscore: item #4—loss of pleasure, item #12—loss of interest, item # 15—loss of energy, and item #21—loss of 
sex  drive53–55.

Environmental Reward Observation Scale (EROS). The  EROS56 is used to assess environmental 
reward and response-contingent positive reinforcement. The original version of this assessment is a 10-item 
scale measuring agreement (1: strongly disagree to 4: strongly agree). The Japanese version of the EROS has 
shown good validity and  reliability57. Additionally, this scale shows a negative correlation with depressive symp-
toms, especially anhedonia  symptoms57.

fMRI data acquisition. In a darkened scanning room, the participants were required to maintain their 
gaze on a fixation point in the center of a monitor screen, not to think of anything specific, and to stay awake. 
Details of the imaging protocols for fMRI data acquisition and the procedure in each dataset are shown in Sup-
plementary Table S1.

fMRI data preprocessing. T1-weighted structural images and resting-state functional images were pre-
processed with SPM8 (Wellcome Trust Centre for Neuroimaging, University College London, UK) running on 
MATLAB R2019a (MathWorks, Inc., Natick, MA, USA). The functional images were corrected for slice-timing 
and subsequently realigned to the mean image. Next, using the associated parameters obtained through the seg-
mentation of the T1-weighted structural images coregistered to the mean functional image, the fMRI data were 
normalized and resampled in 2 × 2 × 2  mm3 voxels. All functional images were then smoothed using an isotropic 
6-mm full-width half-maximum Gaussian kernel. Finally, a scrubbing  procedure58 was used to compensate 
further for motion, removing any volume (i.e., functional images) with excessive movement (frame displace-
ment > 0.5 mm), based on the relative changes from frame to frame in the fMRI time-series (Supplementary 
Table S2 for a summary of head motion).

Interregional correlations. For each participant, pairwise interregional FCs were evaluated between 137 
regions of interest, which were defined anatomically using the BrainVISA Sulci  Atlas59,60 covering the entire 
cerebral cortex and subcortical regions. Then, the time course of fMRI data in each region was extracted. In this 
study, the cerebellum was not incorporated in the construction of the classifier because it was truncated in many 
participants’ images. After applying a band-pass filter (transmission range, 0.008–0.1 Hz), the temporal fluctua-
tions of the white matter, cerebrospinal fluid, and entire brain as well as six head motion parameters were linearly 
regressed out. Then, for each participant, we calculated pairwise Pearson’s correlations among 137 regions of 
interest in order to generate a matrix of 9316 FCs, which were normalized using Z-score transformation. The 
scrubbing procedure was employed to remove any frames exhibiting abrupt head motions in the filtered time 
course.

Classification algorithm for FC selection. An StD classifier with the identified primary FCs was devel-
oped through the combined use of two machine learning algorithms. The procedure for selecting characteristic 
FCs, training a classifier prediction model, and evaluating its generalizability was performed as a sequential 
process of 5 × 5 nested feature-selection and leave-one-out cross validation (see the schematic flowchart in Sup-
plementary Fig. S2). As the first algorithm, in order to reduce the number of features to remove the effects of 
nuisance variables (NVs) including sex and age that may result in catastrophic overfitting, L1-SCCA 23 was used. 
L1-SCCA retained FCs that have an association with a canonical variable related only to the Diagnosis label 
and not to NVs (details are provided in the Supplementary Information of our previous  study25). As the second 
algorithm, in order to identify a small number of features with a high contribution to the classifier,  SLR24 was 
used. SLR is capable of training a logistic regression model, while objectively deleting FCs that are useless for the 
purpose of identifying StD. In SLR, the final number of features according to the principle of automatic relevance 
 determination61 is decided automatically without manually adjusting the hyper-parameters. On this process 
approach, SLR classifier was trained by using all-but-one subjects in each leave-one-out (LOO) cross-validation 
(CV). A sequential process of nested-feature selection and LOOCV is applied to prevent information leakage 
and over-optimistic  results62. Nested cross validation and LOOCV were combined in our machine learning 
algorithm. In order to have more than 20 subjects per fold, we used 5-folds CV for StD classifier development. 
Classification accuracy was evaluated using the output of the logistic regression classifier generated at the end of 
the LOOCV procedure. In conclusion, through the combined use of two machine learning algorithms, prior to 
training SLR, it is essential to reduce the input dimension to a certain extent and remove the effects of NVs that 
may result in catastrophic overfitting. Therefore, before LOOCV, nested feature-selection was carried out using 



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6349  | https://doi.org/10.1038/s41598-023-33077-3

www.nature.com/scientificreports/

L1-SCCA. The robustness and stability of the identified FCs across the LOOCV procedure were confirmed by 
computing their cumulative absolute weights: cκ =

∑

N

i=1

∣

∣W
κ

i

∣

∣ , where N is the number of LOOCV folds (i.e., 
the number of subjects) and Wκ

i
 is the weight associated with the κ-th FC during the i-th LOOCV fold. A greater 

magnitude of cκ indicates a more significant contribution by the κ-th FC to the classification into StD and HC 
throughout the LOOCV procedure. More details of this algorithm were provided in a study of autism spectrum 
 disorder22. The original code is also accessible (please contact the server administrator of the ATR Brain Infor-
mation Communication Research Laboratory: asd-classifier@atr.jp).

Generalization to an independent dataset. Participants for an independent validation dataset were 
recruited from first-year students attending Hiroshima University in a different year, who were diagnosed using 
the BDI-II and Mini-International Neuropsychiatric  Interview63,64. These participants met the same inclusion 
and exclusion criteria as the training dataset (StD subjects: n = 16; HCs: n = 27, Table 1). Details of fMRI data 
acquisition are shown in Supplementary Table S1. The MRI data were preprocessed in the same way as for the 
training dataset, and then the interregional FCs for each subject were calculated. Written informed consent was 
obtained from all participants before participating in the study. The ethics committee of Hiroshima University 
approved this study.

Correlations between the identified FCs and clinical measures. The association between the iden-
tified FCs in the StD classifier and clinical assessments relative to anhedonia and reward responsiveness (BDI-II 
anhedonic subscore and EROS, respectively) was tested. For correlation analyses, Pearson’s and Spearman’s rank 
correlation coefficients were calculated when normality was not rejected and was rejected, respectively, using 
SPSS Statistics 25 software (SPSS, Inc., Chicago, IL, USA). Bonferroni’s correction was used to adjust for multiple 
comparisons, and the significance level was set as p < 0.05/8 (= 0.006).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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