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Electroencephalographic studies of working memory have demonstrated 
cortical activity and oscillatory representations without clarifying how the stored 
information is retained in the brain. To address this gap, we  measured scalp 
electroencephalography data, while participants performed a modified n-back 
working memory task. We calculated the current intensities from the estimated 
cortical currents by introducing a statistical map generated using Neurosynth 
as prior information. Group analysis of the cortical current level revealed that 
the current amplitudes and power spectra were significantly different between 
the modified n-back and delayed match-to-sample conditions. Additionally, 
we  classified information on the working memory task conditions using the 
amplitudes and power spectra of the currents during the encoding and retention 
periods. Our results indicate that the representation of executive control over 
memory retention may be mediated through both persistent neural activity and 
oscillatory representations in the beta and gamma bands over multiple cortical 
regions that contribute to visual working memory functions.
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1. Introduction

Although the human brain can temporarily store information, such as numbers or strings, 
it remains unclear how the stored information is retained in the brain (Postle, 2006; D’Esposito 
and Postle, 2015; Constantinidis and Klingberg, 2016; Chai et al., 2018).

Baddeley’s model of working memory consists of one central executive and three subsystems: 
the phonological loop, the visuospatial sketchpad, and the episodic buffer. The phonological 
loop stores verbal information and revives auditory memory. A visuospatial sketch pad is a 
storage system that holds and processes non-verbal information. An episodic buffer is a 
temporary storage system that integrates visual, spatial, and verbal information with time 
sequencing. The central executive acts as a supervisory system and controls the flow of 
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information from and to its subsystems, thus focusing on and dividing 
attention and switching and activating long-term memory to support 
goal-oriented behavior (Baddeley and Hitch, 1974; Baddeley, 2010).

Human functional magnetic resonance imaging (fMRI) studies 
have shown that the prefrontal and anterior cingulate cortices play 
major roles in implementing the concept of working memory (Osaka 
et  al., 2003; Postle, 2015). Electroencephalography (EEG) and 
magnetoencephalography (MEG) studies have demonstrated that 
oscillatory activity is related to working memory content and load 
(Sarnthein et al., 1998; Miltner et al., 1999). Miller et al. proposed a 
model in which executive control acts via the interplay between 
gamma network oscillations in superficial cortical layers and alpha 
and beta oscillations in deep cortical layers (Lundqvist et al., 2016; 
Miller et al., 2018). However, how Baddeley’s psychological model 
(particularly the representation of the executive control involved in 
memory retention) is implemented in the nervous system remains an 
open question.

fMRI has been widely used in working memory studies in 
humans. This method, which has the advantage of high spatial 
resolution, can be used to identify brain regions related to working 
memory and investigate their functional connectivity. However, fMRI 
cannot acquire high-resolution temporal data due to its 
measurement principles.

However, EEG and MEG are candidates for recording high-
resolution temporal data used for brain activity. EEG/MEG studies on 
working memory have demonstrated cortical activity and oscillatory 
representations. However, it is difficult to use the EEG method to 
acquire high-resolution spatial data because of volume conduction 
effects and large interelectrode distances. MEG has a significant 
advantage over EEG because magnetic fields pass through the head 
without distortion; however, a higher spatial resolution is required. 
Moreover, a visual stimulus may cause task-related eye movements 
that induce eye artifacts in the EEG/MEG data. These eye artifacts 
have some correlation with brain activity, and separating the 
components of brain activity and artifact components is difficult using 
conventional statistical methods such as principal component analysis 
(PCA) or independent component analysis (ICA).

We simultaneously estimated both cortical currents and multiple 
extra-brain source currents from contaminated EEG/MEG data. 
Although the measured EEG/MEG data were contaminated by eye 
artifacts, the proposed method separated the effects of artifacts and 
estimated the cortical currents of the entire brain using the extra-
dipole method (Morishige et  al., 2014, 2021). The sparse logistic 
regression (SLR) method can automatically select, in a data-driven 
manner, truly important features of working memory calculated from 
the estimated cortical currents in multiple cortical regions (Yamashita 
et al., 2008). Furthermore, it can predict the task conditions of the 
working memory from selected current sources. In this study, by 
combining the extra-dipole method and SLR, we predicted working 
memory task conditions from brain regions and investigated the types 
of information represented in these cortical regions.

Two hypotheses have been proposed to explain the brain 
mechanisms used for memory retention in working memory, based 
on the following question: Is it a simple persistent spiking pattern or 
a periodic pattern of theta, alpha, beta, and gamma bandwidths? If 
memory retention is achieved by sustained firing patterns of neurons, 
some differences should exist in the intensity of the estimated current 
at each dipole. If the function is implemented in periodic patterns, the 

spectral features of the estimated currents will differ. We examined 
differences in the magnitudes of the estimated currents in response to 
different memory loads and found significant differences in the 
encoding and retention periods. Furthermore, the spectral features of 
beta and gamma waves were significantly different in several 
cortical regions.

2. Materials and methods

2.1. Participants

Fourteen adults [11 men and 3 women; aged 21–51 years, mean 
age = 31.6 ± 12.2 (standard deviation) years] took part in this study. All 
participants had normal or corrected-to-normal visual acuity. All 
participants participated in the EEG experiments. Five other 
participants also participated in the fMRI experiment; however, these 
data were not included in the study. All experiments were approved 
by the Ethics Committee of Toyama Prefectural University, the Safety 
Committee of the Advanced Telecommunications Research Institute 
International (ATR), and the Ethics Committee of the Hokuriku 
Health Service Association. All experiments were performed in 
accordance with approved guidelines and regulations. Written 
informed consent was obtained from each participant before 
the experiment.

2.2. EEG data collections

We continuously recorded EEG data using a 64-channel 
ActiveTwo EEG system (BioSemi, Amsterdam, Netherlands) with 
electrodes attached to a nylon cap based on the extended 10–20 
international system. The participants sat on a comfortable chair 
50 cm away from a 24-inch LCD monitor (60-Hz refresh rate) in an 
electromagnetically shielded room. We recorded an electrooculogram 
(EOG) from four electrodes located at the left and right temples and 
above and below the left eye. We recorded a neck electromyogram 
(EMG) using two electrodes placed on the left sternocleidomastoid 
muscle. We also recorded finger electromyograms (EMGs) by using 
two electrodes placed in tandem on the extensor digitorum muscles 
of the right arm. To verify the timing of the visual stimulus, 
we measured its onset on the screen using a photodiode. We used 
either the 2-Button Response Pad (Current Designs, Inc., Philadelphia, 
PA) or the BSGP815GY GamePad (Buffalo, Inc., Aichi, Japan) as a 
response box to obtain participants’ feedback and measure the 
response time. However, due to a malfunction of the response box, the 
response time could not be measured for the two participants.

2.3. Magnetic resonance imagining data 
collection

T1-weighted structural images were obtained using either a 3 T 
Siemens Magnetom Prisma Fit scanner (Siemens AG, Erlangen, 
Germany) or a Vantage Orian 1.5 T Magnetic resonance imagining 
(MRI) system (Canon Medical Systems, Ohtawara, Japan), with a 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence. 
The scanning parameters of the Siemens Magnetom Prisma Fit were 
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as follows: repetition time (TR), 2,300 ms; echo time (TE), 2.98 ms; flip 
angle, 9°; voxel size, 1 mm; number of slices, 208; matrix size, 
256 × 256; and field of view, 256 × 256 mm. Those of the Vantage Orian 
were as follows: TR, 20 ms; TE, 4.00 ms; flip angle, 15°; voxel size, 
0.5 mm; number of slices, 400; matrix size, 512 × 512; and field of view, 
256 × 256 mm.

2.4. Task design and procedure

In the original version of the n-back task, figures were presented 
sequentially on the screen, and participants had to remember these 
sequences (Kirchner, 1958; WU-Minn HCP Consortium, 2015). This 
protocol is widely used; however, it poses difficulties for EEG data 
analysis in isolating brain activity during the encoding and retention 
periods. In this study, we modified the n-back working memory task. 
This task comprised three periods (Figure  1A). (a) During the 
encoding period, the modified 2-back task and delayed match-to-
sample (DMTS) task were randomly presented. In the modified 
2-back task, seven stimuli chosen from four types of arrows (left, right, 
up, and down) were presented and replaced sequentially on a monitor. 
One stimulus was randomly presented as a red arrow. Participants 
were instructed to memorize the direction of the arrow that appeared 
two steps before the red arrow. In the DMTS task, the serial 
presentation of a stimulus was the same as that in the modified 2-back 
task, except that a single-arrow stimulus chosen from the four types 
of arrows was used. The same arrow stimulus was presented seven 

times on a monitor. (b) Information is maintained for 3 s. A random 
pattern was presented to avoid visual aftereffects [Figure 1A (3)]. (c) 
During the retrieval period, the participants judged whether the probe 
arrow direction matched the retained direction by pressing one of the 
two buttons with their right index or middle finger [Figure 1A (4)]. 
The participants received visual feedback regarding the correctness of 
their responses [Figure 1A (5)].

The process comprised a single trial. Each session consisted of 20 
trial repetitions, and each task consisted of eight sessions. Each 
participant performed 160 trials (20 trials × eight sessions). The order 
of the modified 2-back and DMTS tasks was counterbalanced across 
participants (left/right/up/down:36 trials; DMTS:16 trials). EEG and 
fMRI experiments were conducted on different days. The participants 
followed identical experimental protocols for the EEG and 
fMRI experiments.

2.5. EEG data analysis

We preprocessed the raw EEG data in the following steps using 
EEGLAB version 14.1.2 (Delorme and Makeig, 2004) running in 
MATLAB 2014b. The data were band-pass filtered in the range of 
0.4–512 Hz (FIR filter of order 16,897; 0.2 Hz and 512.2 Hz cutoff 
frequencies (−6 dB); zero-phase) to remove the low-frequency drift 
components and the high-frequency noise components. Then, 
we applied a notch filter of 59–61 Hz to remove powerline noise (FIR 
filter of order 6761; 59.5 and 60.5 Hz cutoff frequencies; zero-phase). 

FIGURE 1

(A) Illustration of task design. (B) We extracted each trial from −0.5 to 8.0  s and calculated a grand average of the ERSP (event-related spectral 
perturbation) spectrogram of EEG signals across all channels (using wavelet analysis). During the retention period, the largest periodic change was 
observed between 6 and 7.5  s.
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Next, the EEG data were downsampled from 2,048 to 512 Hz. 
We extracted single-trial EEG data epochs from −0.5 to 8.0 s with 
respect to the encoding onset (Figure  1B). After the extraction, 
we corrected the baselines to the pre-stimulus period (−0.5 to 0 s). 
During all sessions, noisy channels due to poor electrode contact and 
broken electrodes were identified by visual inspection and excluded. 
The data were re-referenced using the average reference (the reference 
signal was the average of all the electrodes). Signal deviations in the 
vertical EOG channel of more than 350 μV within the retention period 
were identified as eyeblinks. Signal deviations in all EEG channels of 
more than 200 μV within a retention period were identified as large 
artifacts. Trial data contaminated with eyeblinks and large artifacts 
were excluded from the analysis. Trials with incorrect responses 
during the retrieval period were excluded from the analysis. The 
remaining trials accounted for 79.6% of the total trials 
(Supplementary Table S1) and were used for the data analysis.

2.6. Meta-analysis fMRI prior

We generated a meta-analysis statistical map synthesized by 
Neurosynth (Yarkoni et al., 2011)1 by selecting the term “working 
memory” to express functional activities during the n-back task. After 
generation, the statistical map was co-registered to the participant’s 
structural image using the FSL tools FLIRT and FNIRT (Smith et al., 
2004; Figure 2A). As the synthesized meta-analysis maps were defined 
on voxels, they were transformed into cortical surfaces using an 
inverse-distance weighted interpolation method. An imported map 
was used to calculate the parameters in the probability distribution of 
the prior current variances for hierarchical Bayesian estimation 
according to a previously established method (Suzuki and 
Yamashita, 2021).

2.7. Head and source models

We constructed a polygon cortical surface model for all 
participants using the FreeSurfer software (version 6.0.0; http://surfer.
nmr.mgh.harvard.edu/; Dale et al., 1999) with a T1-structural image 
for each participant. The number of cortical surface dipoles in the 
participants was 10,004. The cortical current sources were located at 
the vertex points of the cortical surface model, and current sources 
were oriented perpendicular to the cortical surface. A positive current 
was defined as the one directed toward the interior of the cortex. The 
main noise source for the left and right eye movements was assumed 
to be  the center of each eyeball. The position of each eyeball was 
obtained from the T1-structural images by visual inspection. Each 
extra-brain source was modeled using the resultant three-dimensional 
dipole current in the x–y–z direction. Six dipoles (two extra-brain 
sources × three directions) were located as described in our previous 
study (Morishige et al., 2014).

We used the three-shell boundary element method (BEM) derived 
from the MRI dataset (Mosher et al., 1999). The conductivities of the 

1 https://neurosynth.org

brain, skull, and skin were assumed to be 0.62, 0.03, and 0.62 S/m, 
respectively.

2.8. Cortical and extra-brain source current 
estimation

We calculated the cortical and extra-brain source currents using 
an extra-dipole method (Morishige et al., 2014) based on a hierarchical 
Bayesian method (Sato et  al., 2004; Yoshioka et  al., 2008) and 
simultaneously estimated the cortical and extra-brain source currents 
by placing the dipoles on both the cortical and extra-brain sources. 
This method can be used to estimate the cortical currents from EEG 
data contaminated with extra-brain sources (Figure 2B).

2.9. Group analysis for estimated cortical 
currents and oscillatory activities

Takeda et al. proposed a group analysis method for the time series 
of the estimated source currents (Takeda et al., 2019). We applied this 
method to examine the differences in the amplitudes and power 
spectra of the source currents estimated from EEG data.

We calculated the time series of trial-averaged source currents and 
scaled their amplitude, so they had a mean of 0 and a standard 
deviation of 1 in a baseline period (−0.5 to 0 s). The time series of the 
trial-averaged source currents was calculated from the normalized 
source currents for a single retention period. Then, we  split the 
encoding and retention periods into 12 subperiods (0.2–1.0 s, 
1.0–1.8 s, 1.8–2.6 s, 2.6–3.4 s, 3.4–4.2 s, 4.2–5.0 s, 5.0–5.5 s, 5.5–6.0 s, 
6.0–6.5 s, 6.5–7.0 s, 7.0–7.5 s, and 7.5–8.0 s), and then, we compared all 
participants’ current amplitude in an encoding/retention subperiod 
between modified n-back and DMTS conditions with a paired t-test 
at each current source. To examine the differences in the spectral 
features of the two conditions, we estimated the power spectral density 
using Welch’s method for each source current in each trial in a baseline 
period and an encoding/retention subperiod from the estimated 
source currents and calculated the sum of power spectral densities in 
each frequency band of interest: theta (4–8 Hz), alpha (8–13 Hz), low 
beta (13–20 Hz), high beta (20–30 Hz), and gamma waves (30–50 Hz). 
We normalized the mean power spectral density of each frequency 
band using the baseline period values and converted them to a decibel 
scale using a log base (Cohen, 2014). We compared the normalized 
mean power spectral densities between the modified n-back and 
DMTS conditions using a paired t-test at each sampling time. The 
p-values for the paired t-test were corrected for multiple comparisons 
using Benjamini and Hochberg’s false discovery rate (FDR) procedure 
(Benjamini and Hochberg, 1995). The FDRs were controlled at 0.05.

2.10. Classification

To investigate the representation of working memory in cortical 
regions, we classified information on the task conditions of working 
memory using current amplitudes and power spectral densities during 
the encoding and retention periods. We selected 100 cortical dipole 
currents in the order of t-values generated by the Neurosynth meta-
analysis statistical map and used them for classification. We computed 
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the sum of the absolute current amplitudes and power spectral 
densities of the low beta, high beta, and gamma waves using Welch’s 
method. Sparse logistic regression was used to reduce the input 
dimensions of the current amplitudes and power spectral densities, 
which were then divided into two classes (modified n-back or DMTS 
tasks; Yamashita et al., 2008; Figure 2C) and evaluated using leave-
one-out cross-validation. A permutation test was performed by 
randomizing the labels 100 times to determine whether the 
performance of the classifiers was statistically meaningful. The 
one-sided p-values of the test were calculated as the proportion of 
sampled permutations where the differences in means were greater 
than the test statistic. The accuracy, precision, recall, F-measure, and 
balanced accuracy were calculated and used for the evaluations. The 
p-values for the permutation test were corrected for multiple 
comparisons using Benjamini and Hochberg’s false discovery rate 
(FDR) procedure (Benjamini and Hochberg, 1995). The FDRs were 
controlled at 0.05.

The ratio of the trial numbers for the modified n-back and DMTS 
tasks was 144:16, which is a medium-imbalanced dataset. To address 
the imbalanced data problem in classification, we  extended the 
original SLR and applied the formulation using weighted logistic 
regression (King and Zeng, 2001; Maalouf and Siddiqi, 2014). The 
likelihood function of the logistic regression can be  rewritten 
as follows:

 
P
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w y

i
w yi iy X|
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1 01

where X � � �x xNinput1, ,
 is an input feature vector, ββ  is a weight 

vector including a bias term, y is the outcome vector 
(either yi =1 or yi = 0), w N N N1 � �� �trial all class trial DMTS_ _/ , 
w N N N0 � � � �� �trial all class trial nback_ _/ , and � i x� � �� �� �1 1/ exp .

To improve computational efficiency, we  used Z currents as 
cortical currents to calculate the sum of the current amplitudes and 
power spectral densities (Morishige et al., 2021).

3. Results

3.1. Behavior

All participants performed both modified 2-back and DMTS tasks 
with high success rates (mean success rate ± standard deviation, 
94.3 ± 3.3% and 98.7 ± 2.7%, respectively). The response times for the 
two conditions were 0.83 ± 0.22 and 0.79 ± 0.24 s, respectively. There 
was no significant difference in response time [paired t-test: 
t(11) = 1.6657, p = 0.1240]. However, the success rate of the modified 
2-back task was significantly lower than that of the DMTS condition 

FIGURE 2

(A) Linear and non-linear transformation for meta-analysis fMRI data from MNI152 to individual T1 spaces. (B) Illustration of the extra-dipole method. 
(C) Illustration of classification of modified n-back and DMTS task conditions.
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[paired t-test: t(13) = 3.2412, p = 0.006], indicating that the EEG 
comparison among the different conditions could be influenced by the 
difficulty of the task.

3.2. Cortical and extra-brain source 
currents

The cortical current in each participant was estimated using 
the extra-dipole method. We calculated the trial-averaged values 
from the estimated current densities and plotted the absolute and 
maximum values on the cortical surface model. The cortical 
regions of the dorsolateral prefrontal cortex (DLPFC), posterior 
parietal cortex (PPC), and early visual areas showed large current 
intensities. These areas are related to visual working memory 
processes (Figure 3).

We also searched for the maximum current densities across all 
dipoles on the cortical surface of each participant and calculated the 
mean values and standard deviations. The values were 133.2 ± 99.9 
pAm/mm2. In previous electrophysiological studies, the estimated 
current densities ranged from 25 to 250 pAm/mm2(Hämäläinen et al., 
1993). The values calculated in this study were within these ranges. 
We also calculated the mean values of the absolute eye currents from 
single-trial data. These amplitudes ranged from 0.12 to 53.2 nAm, and 
these estimated values were similar to those of previous research with 

respect to the order of magnitude (Katila et  al., 1981; Morishige 
et al., 2014).

If memory retention is achieved through sustained neuronal 
firing patterns, there should be differences in the intensity of the 
estimated current at each dipole. However, if the function is 
implemented in periodic patterns, the spectral features of the 
estimated currents should differ. We examined whether there were 
differences in the magnitude of the estimated currents in response 
to different memory loads and found significant differences in the 
encoding and retention subperiods ([0.2–1.0 s]: p = 0.001, 
FDR-corrected, paired t-test; [1.0–1.8 s]: p = 0.002, FDR-corrected, 
paired t-test; [1.8–2.6 s]: p = 0.01, FDR-corrected, paired t-test; 
[4.2–5.0 s]: p = 0.04, FDR-corrected, paired t-test; [5.0–5.5 s]: 
p < 0.0001, FDR-corrected, paired t-test; [5.5–6.0 s]: p = 0.004, 
FDR-corrected, paired t-test; Figures 4A,B). Additionally, spectral 
features of beta and gamma waves had significant differences in 
several cortical regions ([1.8–2.6 s]: (high beta) p = 0.001, (gamma) 
p = 0.04, FDR-corrected, paired t-test; [2.6–3.4 s]: (low beta) 
p = 0.02, (high beta) p = 0.02, (gamma) p = 0.04, FDR-corrected, 
paired t-test; [3.4–4.2 s]: (low beta) p = 0.02, (high beta) p = 0.01, 
(gamma) p = 0.02, FDR-corrected, paired t-test; [4.2–5.0 s]: (high 
beta) p = 0.04, (gamma) p = 0.03, FDR-corrected, paired t-test; 
[5.0–5.5 s]: (high beta) p = 0.01, (gamma) p = 0.03, FDR-corrected, 
paired t-test; [6.0–6.5 s]: (gamma) p < 0.0001, FDR-corrected, 
paired t-test; [7.0–7.5 s]: (gamma) p = 0.04, FDR-corrected, paired 
t-test; Figures 4A,B).

3.3. Classification

If the estimated cortical currents contain information about visual 
working memory, the task conditions must be predicted from the 
currents or power spectra during the encoding and retention periods. 
Considering the results of the group analysis in the previous 
subsection, we investigated the representation of working memory 
task conditions using the current amplitudes and power spectral 
densities during each encoding/retention subperiod by computing the 
sum of the absolute current amplitude in a subperiod and the average 
power spectral densities in each significant frequency band (low beta, 
high beta, and gamma waves) using Welch’s method. We  used 
weighted sparse logistic regression to reduce the input dimension of 
the power spectrum densities and classified the trials as modified 
n-back or DMTS tasks. The classification accuracies in six encoding 
and six retention subperiods were 84.8 ± 5.1%, 84.0 ± 4.0%, 84.1 ± 5.0%, 
85.3 ± 3.5%, 85.8 ± 3.6%, 84.3 ± 3.0%, 84.4 ± 3.7%, 85.1 ± 4.0%, 
84.7 ± 5.2%, 82.9 ± 5.3%, 85.9 ± 3.5%, and 84.5 ± 3.7%, respectively 
(Figure 5A). The precisions were 90.0 ± 1.5%, 89.4 ± 1.4%, 89.5 ± 1.4%, 
90.2 ± 1.2%, 90.3 ± 1.4%, 89.7 ± 0.9%, 89.7 ± 1.1%, 89.9 ± 1.0%, 
89.4 ± 1.8%, 89.4 ± 2.0%, 90.2 ± 1.0%, and 90.0 ± 1.4%, respectively. The 
recalls were 93.3 ± 4.9%, 93.1 ± 4.0%, 93.1 ± 5.1%, 93.7 ± 3.5%, 
94.3 ± 3.3%, 93.0 ± 3.3%, 93.2 ± 3.8%, 93.8 ± 4.4%, 94.0 ± 4.9%, 
91.7 ± 4.8%, 94.6 ± 3.8%, and 93.0 ± 3.3%, respectively. The F-measures 
were 91.6 ± 3.0%, 91.2 ± 2.4%, 91.2 ± 3.0%, 91.9 ± 2.0%, 92.2 ± 2.1%, 
91.3 ± 1.8%, 91.4 ± 2.2%, 91.8 ± 2.4%, 91.6 ± 3.1%, 90.5 ± 3.2%, 
92.3 ± 2.1%, and 91.5 ± 2.1%, respectively. The balanced accuracies 
were 52.0 ± 5.6%, 49.1 ± 3.8%, 49.4 ± 3.6%, 52.8 ± 5.3%, 53.2 ± 6.3%, 
50.5 ± 4.1%, 50.3 ± 3.9%, 51.4 ± 4.1%, 49.4 ± 5.2%, 49.2 ± 5.9%, 
52.5 ± 5.3%, and 51.5 ± 8.2%, respectively. In total, 72 of all 168 

FIGURE 3

Cortical current distribution using a statistical map generated by 
Neurosynth (example of a typical subject).
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accuracies (= [12 subperiods] × [14 participants]), 64 of 168 precisions, 
60 of 168 recalls, 66 of 168 F-measures, and 64 of 168 balanced 
accuracies reached significance (p < 0.05, permutation test, 
FDR-corrected; Supplementary Tables S2–S6).

To investigate whether the scores differed by time interval, a 
randomized block design one-way ANOVA was performed. The 
ANOVA results identified no significant differences among the scores 
of the subperiods [accuracy: F(11,143) = 0.81, p = 0.63; precision: 
F(11,143) = 1.29, p = 0.33; recall: F(11,143) = 0.641, p = 0.77; F-measure: 
F(11,143) = 0.79, p = 0.65; balanced accuracy: F(11,143) = 1.23, 
p = 0.36]. We also used weighted SLR to examine the frequency bands 
of the features used for identification and found that all types of 
dipoles, current amplitudes, and low beta, high beta, and gamma 
waves were selected as discrimination features for each subperiod 
(Figure 5B).

4. Discussion

In this study, we  examined the brain mechanisms underlying 
executive control over memory retention in working memory to 
determine whether this was a simple persistent spiking or a periodic 
pattern. We  measured the scalp EEG data, while the participants 
performed modified n-back working memory tasks and estimated the 
cortical currents from the EEG data by introducing a statistical map 
generated by Neurosynth as prior information. A group analysis of the 
cortical current level revealed that both the current amplitudes and 
power spectra were significantly different between the modified 
n-back and DMTS conditions. We  classified information on the 
working memory task conditions using the power spectrum of the 
currents during the encoding and retention periods. Our results 
indicate that executive control over memory retention may 

FIGURE 4

Differences in magnitudes of estimated source currents and power spectral densities between modified n-back and DMTS conditions. (A) Number of 
significant current sources for each subperiod of encoding and retention. (B) Significant current source locations on the cortical surface map for the 
subperiods of encoding and retention.
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be  represented by both current amplitudes and oscillatory 
representations in the beta and gamma bands over multiple cortical 
regions that contribute to visual working memory function.

Although group analysis methods are commonly used in the 
analysis of fMRI data, they have not been previously applied to whole-
brain cortical currents estimated from observed data owing to 
technical difficulties. In this study, using the method by Takeda et al. 
(2019) in combination with the extra-dipole method (Morishige et al., 
2014), eye artifacts can be effectively removed at the current estimation 
stage and examined using the obtained cortical currents with high 
temporal–spatial resolution. It is particularly significant that 

we investigated the changes in brain activities during a short time 
interval (0.8 s visual cue repetition on encoding period and 3 s 
retention) of memory encoding and retention by performing a time-
frequency analysis with high spatial resolution.

In the original version of n-back task, the overlap between the 
encoding and retention periods prevented a clear separation of the 
functional roles of the two for discussion. We revised the experimental 
paradigm and established separate retentions to allow for a clear 
separation from the encoding period.

During the retention period, both modified n-back task and the 
DMTS task required participants to temporarily remember one (or a few) 

FIGURE 5

(A) Mean values and standard errors of scores (accuracy, precision, recall, F-measure, and balanced accuracy) for each subperiod of encoding and 
retention using the weighted sparse logistic regression method. (B) Ratios of types of selected dipole numbers. We counted the number of times it was 
selected as a weighted SLR feature for each trial, calculated the mean ratio for each participant, and plotted the average ratios as a stacked bar chart. 
The rate of selected dipole for currents, low beta, high beta, and gamma waves are shown as red, green, brown, and yellow bars, respectively.
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of the stimuli repeatedly presented seven times. When comparing the 
cortical currents in the modified n-back and DMTS task conditions over 
the retention period, if there was evidence of behaviors in which working 
memory was used more strongly during this period under the modified 
n-back task condition, significant differences in the retention period 
would be expected; however, there was no evidence of such a behavior. 
Behavioral performance (success rate) in the modified n-back task 
condition was lower than that in the DMTS task condition because it only 
represented the difficulty of encoding. Therefore, the difference between 
the two groups with respect to working memory should be investigated 
during the period of encoding rather than retention.

In our experiment, the modified n-back and DMTS tasks were 
presented randomly without any additional instructions. In the flow 
of the DMTS task, the same arrows were presented repeatedly. The 
participant becomes intuitive about the third arrow and is convinced 
that this is a DMTS task through the presentation of the red stimulus. 
Therefore, before presenting the first or second stimulus, the 
participants did not realize that it was a DMTS task or a modified 
n-back task. In our group analysis, we investigated the differences 
between the modified n-back and DMTS tasks, so the significant 
differences in the low/high beta and gamma bands were found in the 
time intervals from the third subperiod of encoding to the first 
subperiod of the retention, which were also reasonable results.

Pesonen et al. examined event-related desynchronization (ERD) and 
event-related synchronization (ERS) responses for targets and non-targets 
under four different memory load conditions (0-, 1-, 2-, and 3-back) from 
EEG data (Pesonen et al., 2007). They found that the early-appearing beta 
rhythm (14–30 Hz) decreased with an increasing memory load. 
Additionally, the beta rhythms increased under the 0- and 1-back 
memory load conditions. Our group analysis results correspond to the 
differences in the power of the beta frequency band calculated from the 
2-back and 0-back tasks. Therefore, the finding that beta is significantly 
negative is consistent with the results of Pesonen et al.

In addition, event-related brain oscillatory responses in the beta 
frequency range are associated with cognitive processing and motor 
cortex activity. In the original version of the n-back task, participants 
were required to respond by pressing a button immediately after the 
presentation of the visual stimulus. The encoding period of working 
memory and the period of motor preparation overlap, making it 
difficult to distinguish between the beta waves originating from both. 
By contrast, in our modified n-back task, the button was pressed after 
the retention period. Therefore, the effects of oscillations on motor 
planning and cognitive memory processes should be  discussed 
separately. Our results suggest that beta oscillations mainly reflect the 
influence of cognitive and memory processing and that the effect of 
motor planning is small.

The subperiods with significant differences in gamma oscillations 
overlapped with those in beta oscillations. It has been hypothesized 
that gamma and beta oscillations may be synchronized. Lundqvist 
et al. examined brief bursts of high gamma (50–120 Hz) and high beta 
(20–35 Hz) oscillations in monkeys (Lundqvist et  al., 2018). Beta 
bursts are associated with suppressing gamma bursts and object 
information during spiking. Gamma and beta bursting were anti-
correlated over time but only at recording sites where spiking carried 
information about objects to be remembered. The interplay between 
beta and gamma bursts suggests a potential mechanism for controlling 
working memory. The relationship between high gamma and high 
beta oscillations should also be investigated.

Pesonen et  al. showed that the magnitude of alpha oscillations 
decreases with memory load (Krause et al., 2000; Pesonen et al., 2007). 
However, in this study, no significant differences between the modified 
n-back and DMTS task conditions were observed in any subperiod of 
encoding and retention (all subperiods and dipoles of theta and alpha 
oscillations, p > 0.05, FDR-corrected, paired t-test). Haegens et  al. 
suggested that alpha oscillations have similar inhibitory roles in sensory-
motor areas in DMTS tasks. In general, sensory alpha has been suggested 
to have inhibitory functions, and it might be that beta has a similar role, 
but the frequency is shifted upward in the higher-order cortex. 
Interactions between the mediodorsal thalamus and prefrontal cortex 
likely produce beta oscillations. Thus, Lundqvist et al. hypothesized that 
the network between the mediodorsal thalamus and prefrontal cortex 
might be involved in regulating working memory activity. In contrast, the 
superficial layers of the prefrontal cortex may contain the contents 
themselves (Lundqvist et al., 2018). Therefore, there may have been no 
significant difference between the alpha oscillations of the modified 
n-back and DMTS conditions in this study. However, there is another 
possibility that these discrepancies between previous studies and our 
results may be at least partially explained by different task flows. The 
original version of the n-back task required a constant memory load 
because encoding and retention were repeated simultaneously. In 
contrast, in the modified n-back task used in this study, encoding and 
retention were sequential and repeated with a short break after each trial. 
Therefore, the effect of memory load varies among subperiods, and its 
effect may be relatively small.

The potential increased in the parietal region 300 ms after the 
visual stimulus presentation. Moreover, it is also known that the 
potential varies with the magnitude of the memory load (McEvoy, 
1998; Segalowitz et al., 2001). The time interval during which the 
seventh visual stimulus was presented was the time of the greatest 
memory load in the 2-back task. In the current study, the estimated 
currents were significantly larger during the time range in which the 
sixth and seventh visual stimuli were presented, possibly for these 
reasons. However, the estimated currents were also significantly larger 
during the encoding subperiods when the first and second visual 
stimuli were presented. The main reason for this was presumably an 
imbalance in the number of trials in the modified n-back and DMTS 
tasks. The modified n-back task had a larger proportion of trials; 
therefore, the participants tended to expect the modified n-back task 
to start before each trial began. Because we are not certain if this is the 
main reason, we should review the observed data to clarify the cause.

Attempts to decode working memory contents have been made 
by many researchers using various measurement techniques such as 
neural activities, scalp surface EEG, MEG, and fMRI (Harrison and 
Tong, 2009; Christophel et al., 2012; Syrjälä et al., 2021). Many studies 
have reported that periodic components of theta/alpha bandwidths 
contribute to the representation of memory content and task 
conditions (Kawasaki et al., 2010; Sauseng et al., 2010; Akiyama et al., 
2017) and that beta and gamma bandwidths contribute to their 
realization (Howard et al., 2003; Lundqvist et al., 2016; Daume et al., 
2017; Lundqvist et al., 2018). The ability to classify memory content 
by using fMRI suggests the presence of specific activity patterns. 
Although various ways of representing the contents of working 
memory have been proposed, there are too few methods that discuss 
them in a unified manner. By combining methods of estimating 
cortical currents from EEG data and classifying brain information 
from the estimated currents using the SLR, it is possible to examine 
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brain activity related to working memory with higher temporal and 
spatial resolutions than that associated with conventional methods. 
Our results indicate that both persistent neural and oscillatory 
activities in specific brain regions contribute to the retention of 
memory task conditions, but both contribute to its realization in a 
wide range of brain regions.

The time intervals with significant differences varied widely among 
the participants. Individual differences may be  large because of 
differences in information processing abilities and strategies among 
participants. Classification may be  significant in the subperiods of 
encoding after the presentation of the first and second visual stimuli. 
This finding may also be explained by an imbalance in the number of 
trials required for the modified n-back and DMTS tasks.

In this study, we analyzed the estimated cortical currents only during 
the encoding and retention periods. However, using our method of 
analysis, it is also possible to analyze the retrieval periods. Therefore, in 
future, we would like to clarify how working memory task conditions and 
their contents are represented not only in the encoding and retention 
periods but also in the retrieval periods. In addition, we  conduct 
experiments not only on the modified 2-back task but also on the 
modified 3-back task, which is more difficult. We compute the current 
amplitudes and power spectra and compare them and classification of 
correct and incorrect response items in the modified n-back task to 
confirm that both persistent neural and oscillatory activities are associated 
with working memory contents and loads.
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