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Humans can acquire appropriate behaviors that maximize rewards on a trial-and-error basis. Recent electrophysiological and imaging studies
have demonstrated that neural activity in the midbrain and ventral striatum encodes the error of reward prediction. However, it is yet to be
examined whether the striatum is the main locus of reward-based behavioral learning. To address this, we conducted functional magnetic
resonance imaging (fMRI) of a stochastic decision task involving monetary rewards, in which subjects had to learn behaviors involving different
task difficulties that were controlled by probability. We performed a correlation analysis of fMRI data by using the explanatory variables derived
from subject behaviors. We found that activity in the caudate nucleus was correlated with short-term reward and, furthermore, paralleled the
magnitude of a subject’s behavioral change during learning. In addition, we confirmed that this parallelism between learning and activity in the
caudate nucleus is robustly maintained even when we vary task difficulty by controlling the probability. These findings suggest that the caudate
nucleus is one of the main loci for reward-based behavioral learning.
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Introduction
Guided only by reward and penalty information, animals can
adapt their behaviors so that maximal rewards are obtained in the
long run, even in unfamiliar and stochastic environments. This
reward-based behavioral learning problem has been modeled in
several ways (Sutton and Barto, 1998; Breiter et al., 2001). The
central learning algorithm in the reinforcement learning models
changes behaviors in proportion to reward prediction errors.
Some computational models have proposed that the signal trans-
mission in the striatum is modified by synaptic plasticity for be-
havioral learning, while being guided by reward prediction error
conveyed by midbrain dopamine neurons (Houk et al., 1995). In
their pioneering work, Hollerman and Schultz (1998) have accu-
mulated compelling evidence that dopamine neurons in the
monkey midbrain encode reward prediction errors. Human im-
aging studies have revealed that the activity in the ventral stria-
tum and putamen (Berns et al., 2001; Breiter et al., 2001; McClure
et al., 2003; O’Doherty et al., 2003) is correlated with the reward
prediction errors in classical conditioning tasks.

The dorsal striatum, which receives inputs from the dopamine
neurons and constitutes loop circuits with many cerebral cortical
areas, can potentially be the main locus of reinforcement learning in
which behavioral changes are induced by synaptic plasticity while
controlled by the reward prediction error. However, it has not yet
been demonstrated that the neural activity of the dorsal striatum
parallels the behavioral change or reward prediction errors during
reward-based learning of new behaviors. To investigate the neural
mechanism of reward-based behavioral learning (instrumental con-
ditioning), experimental sessions should contain at least several trials
of behavioral learning for a reliable correlation between behavioral
changes and neural activity. In addition, the correlation would be
more reliable if the rate or difficulty of learning could be quantita-
tively controlled by task parameters. Here, we developed a new sto-
chastic decision task that satisfies all of these prerequisites and dem-
onstrate that the activity of the caudate nucleus parallels the
behavioral change during learning as well as the amount of short-
term reward by using functional magnetic resonance imaging
(fMRI).

Materials and Methods
Experimental paradigm. In a Test block of the task (Fig. 1 A), subjects
were required to move a start disk (green; displayed at 0 sec) located in
one of two boxes to the target box where a target disk (red; displayed 0.5
through 1.0 sec) is located by pushing the left or right button after a sound
cue. Note that the start and target disk positions can overlap. All of the
subjects pushed the buttons with their right-hand index or middle finger. If
the green disk moved to (or stayed at) the target disk box successfully, the
target box lighted up, and the subject earned a positive reward (�5 yen).
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Otherwise, the subject suffered the same amount of penalty (�5 yen). The
accumulated reward was displayed above the boxes and was updated after
each button push. Successive trials were initiated using the final disk position
of the previous trial as a start disk position, with a randomly selected target
disk position.

The disk movement was stochastically dependent on the selected but-
ton according to the transition rules described below (rules 1– 4). For
example, in rule 2, the left button push (Fig. 1 B) moved the disk to the
right with a probability of 0.8 and to the left with a probability of 0.2,
regardless of whether the disk was initially located at the left or right.
Conversely, the right button push (Fig. 1C) moved the disk to the left
with a probability of 0.8 and to the right with a probability of 0.2. There-
fore, in rule 2, the optimal behavior for the right target, for example, as in
Figure 1 A, was to push the left button.

One transition rule consists of two 2 � 2 matrices corresponding to a
left or right button push, respectively. Each element of the matrices
shows the disk movement probability for a given start and target position
in the following format as displayed in the first matrix in rule 1: (1) first
row, starting from left, (2) second row, starting from right, (3) first
column, moving to left, and (4) second column, moving to right.

Rule 1: Pleft � �start
start

left
right

move left
1.000
0.000

move right
0.000
1.000

�
Pright � �0.000

1.000
1.000
0.000�

Rule 2: Pleft � �0.200
0.200

0.800
0.800�

Pright � �0.800
0.800

0.200
0.200�

Rule 3: Pleft � �0.325
0.675

0.675
0.325� Pright � �0.675

0.325
0.325
0.675�

Rule 4: Pleft � �0.500
0.500

0.500
0.500� Pright � �0.500

0.500
0.500
0.500�

Rule 1 is deterministic, consisting of probabilities 0 and 1, and always
moves the disk in the same way. Rules 2, 3, and 4 are increasingly more

stochastic with dominant probabilities of 0.8,
0.675, and 0.5, respectively. Therefore, rules 1,
2, and 3 became more difficult to learn in this
order. Rule 4, with equal 0.5 probabilities, is
completely random, so no effective learning
was possible. An essential and attractive prop-
erty of the current task is that the task difficulty
is controlled by only one parameter (i.e., the
dominant probability in a principled way). Be-
cause preparatory experiments found that pre-
vious exposition to rule 4 sometimes deterio-
rates subsequent learning in other rules and
increased differences among subjects, rules 1– 4
were used in this fixed order in scanning ses-
sions for all of the subjects without explicit in-
structions concerning task difficulty. As ex-
pected, actual learning became slower in this
order.

One Test block included 12 trials. In a Con-
trol block, the subjects were required to push
the same buttons as in the preceding Test block
after a visual instruction given as the green disk
position. There was no reward or penalty given
in the Control block. The Test and Control
blocks were interleaved. One session for each
transition rule included 15 Test/Control blocks
containing 180 Test trials and lasted for 24 min
(4 sec � 12 trials � 2(Test � Control) � 15
blocks). The subjects were told that the disk
would move in a stochastic but systematic man-

ner according to the pushed button and were encouraged to earn as much
monetary reward as possible, which was actually given to them in addi-
tion to the basic compensation.

Explanatory variables. Four explanatory variables were derived from
subject behaviors. The short-term reward (SR) denotes the amount of
money (yen) obtained in one term, defined as one-half of a block (six
trials). The accumulated reward (AR) denotes the amount of money
accumulated up to the current term in each transition rule.

The learning rate index (LRI) quantifies the change in button push
behavior from one term to the next. Because the subject’s behavior in the
ith term can be described by how often button b was pushed when start s
and target t are provided (s, t, and b take a value of either left or right), we
represent it as probabilities Pi�b�s,t�. Therefore, the differences in button
push behaviors can be captured by a distance measure between the two
corresponding probabilities. The KL distance (Cover and Thomas, 1991)
defined below is the most standard measure of distance between two
probabilities p and q, where the summation is taken for all of the possible
events to calculate expectation. The KL distance formally represents how
much information (bits) is lost when a probabilistic distribution p is
compressed by another distribution q instead of p. It takes a non-negative
value and equals 0 only if p and q are identical:

KL� p�q� � �p log
p

q

The LRI of the ith term representing behavioral change in the adjacent ith
and (i � 1)th terms is a straightforward application of the KL distance
between the two sets of probabilities Pi�1�b�s,t� and Pi�b�s,t�. If a given
transition rule is learnable for a subject (rules 1–3), the subject is expected
to change behavior a lot at the beginning of learning, but not to change it
much at the later stage of learning. In this case, LRI is expected to look like
an exponentially decaying learning curve, which approximately reflects
how much synaptic plasticity takes place for behavioral changes.

The learning convergence index (LCI) represents a memory consoli-
dation process for optimal decision-making. Because the progress in
learning can be measured by how close the current button push behavior
is to the final one, LCI was defined as a similarity index between the
current and final button push behaviors. Because a negated value of the
KL distance between Pi�b�s,t� and Pfinal�b�s,t� represents a similarity of

Figure 1. Experimental design. A, Visual displays, button pushing, and their timing in the stochastic decision task. B, C,
Graphical explanation of transition rule (rule 2). The two circles denote the two (left or right) positions of the disk. The arrows and
attached numbers represent disk movements and their corresponding probabilities when the displayed button is selected.
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behaviors in the ith and final term, we defined the LCI of the ith term by
normalizing the negated KL distance between 0 and 1. Therefore, LCI
becomes 0 when the current button push behavior is maximally distant
from the final one and approaches 1 as the current behavior becomes
more similar to the final one, in other words, as the optimal (except rule
4) behavior is acquired.

The correlation coefficient between two explanatory variables for one
subject was highest at 0.68 between LCI and SR and �0.41 for any other
combination. The mean and SD over subjects between LCI and SR were
0.61 and 0.07, respectively. The multicolinearity among the explanatory
variables was evaluated by the variance inflation factor (VIF) (Chatterjee
and Price, 1977). The VIF of one variable is 1/(1 � R 2), where R is a
multiple correlation coefficient of the given variable fitted by the remain-
ing variables. Typically, the statistical result is assumed unreliable if
VIF � 10. In our experiment, the maximum value of VIF for all of the
subjects was 2.21.

MRI acquisition and analysis. Eight healthy adults (24 –33 years of age;
two females, six males; all right-handed) participated in the experiment.
The informed consent of the participants was obtained beforehand, and
the protocol was approved by the ethics committee of Advanced Tele-
communications Research Institute. MRI scanning was done with a 1.5
tesla Marconi scanner. For each subject, 480 scans ([Test (8 scans) �
Control (8 scans)] � 15 � 2) of Bold images (repetition time, 6 sec; echo
time, 55 msec; flip angle, 90°; field of view, 192 mm; resolution, 3 � 3 �
3 mm) were acquired for the first two rules. Each fMRI session contained
four preliminary dummy scans corresponding to six Control trials to
allow for T1 equilibration effects. After a break, the same procedure was
repeated for the other two rules. High-resolution structure images were
also acquired for each subject. The data were analyzed by statistical para-
metric mapping (SPM99) (Friston et al., 1995). Before the statistical
analysis, we conducted motion correction and nonlinear transformation
into the standard space of the Montreal Neurological Institute coordinates as
implemented in SPM99. These images were smoothed with a 6 mm full-
width half-maximum isotropic Gaussian kernel. The transformation into
the Talairach coordinates (Talairach and Tournoux, 1998) was done by
affine transformation after the entire analysis was completed.

Regression analysis was conducted on all of the fMRI data of the four
rules. In addition to LRI, LCI, SR, and AR, we added four binary variables
(each representing one rule). The regression results were masked with the
Test–Control contrasts obtained for all of the rule sessions ( p � 0.05,
corrected), under the assumption that all of the learning-related brain
activities are included in Test–Control. During Control blocks, LRI, LCI,
and SR were set to 0, and AR was set to the AR of the preceding Test
condition. AR-correlated voxels in Figure 3A–C were for only the rule 4
condition (Elliot et al., 2000), because the monotonic increases in AR for
the other rules may absorb physiological and mechanical noises.

Results
Behavioral Data
Figure 2 shows how the reward acquisition and button push be-
haviors changed during the Test blocks for the least (A) and most
(B) successful subjects in terms of total monetary reward, as well
as the average of the eight subjects (C). The SR continued to
increase during the entire session for rules 1–3. The horizontal
lines in the top row of Fig. 2C show theoretical maximum values
for SR that can be expected for optimal button pushing (30, 18,
10.5, and 0 yen for rules 1– 4, respectively). ARs increased almost
monotonically for rules 1–3 and exhibited increasingly smaller
positive slopes for rules 1–3 but did not increase for rule 4. SRs in
the final terms were not significantly different from the above
theoretical maximum values ( p � 0.4). Correspondingly, ARs in
the final terms (excluding rule 4) were significantly larger than
zero ( p � 0.0001). These observations demonstrate that learning
certainly took place for rules 1–3.

In the deterministic task (rule 1), the LRI decreased to 0 and
the LCI approached 1 within 10 terms for all of the subjects. In the
moderately stochastic task (rules 2 and 3), the decrease in LRI and
the increase in LCI became gradually slower than for rule 1. In the
random task (rule 4), LRI and LCI tended to continuously fluc-
tuate until the very final stage. Figure 2C indicates that the aver-

Figure 2. Behavioral results of learning. Shown are data from the least successful subject ( A), the most successful subject ( B), and the average and SDs of all eight subjects ( C). The time courses
of SR, AR, LRI, and LCI are shown from top to bottom.
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age LRI across subjects was large at early terms and decreased as
learning progressed, while individual subjects sometimes did not
change their behaviors for the first few trials and their LRI started
from 0 (Fig. 2A, rule 3). All of the subjects reported in retrospec-
tive inquiries that they tried in vain to discover the rules between
the button push and the disk movement even for rule 4, and four
of them reported that they eventually fixed their behavior. These
observations indicate that learning difficulty was effectively con-
trolled by the stochastic parameter.

fMRI study
Subtraction analysis
We first determined which brain areas were more strongly acti-
vated in the Test condition than in the Control condition for each
transition rule ( p � 0.05, corrected for multiple comparisons in
rules 2– 4; p � 0.001, uncorrected in rule 1). Rule 1 induced
activation only in the bilateral intraparietal sulcus, bilateral supe-
rior parietal cortices, and left cerebellum. In addition to these
areas, rules 2 and 3 strongly activated the basal ganglia, right
cerebellum, bilateral premotor, bilateral orbitofrontal, bilateral
superior parietal, bilateral occipital, and right prefrontal cortices,
as well as the supplementary motor area (SMA). In rule 4, in
addition to the above areas, the brain activity extended to the left
prefrontal cortex, right amygdala, and right superior temporal
lobule. Although these neural activities were generally strongest
in rule 4, signal intensity in the caudate nucleus, the globus pal-
lidus, and the orbitofrontal cortex were rather constant, that is, t
values for rules 2– 4 were 6.05, 5.47, and 5.80 in the left caudate
nucleus, 7.09, 6.93, and 6.10 in the left globus pallidus, and 7.52,
7.24, and 7.34 in the left orbitofrontal cortex, respectively.

Regression analysis
To further investigate the brain structures found in the subtrac-
tion, we performed a multivariate regression analysis of fMRI
data with LRI, LCI, SR, and AR. The threshold for LRI, LCI, and
AR was p � 0.05, corrected for Test–Control volume, and that for
SR was p � 0.001, uncorrected. Table 1 and Figure 3 summarize
the brain areas revealed by the analysis. LRI had significant cor-

relations with activity in the bilateral caudate nucleus, globus
pallidus, orbitofrontal, prefrontal, and occipital cortices, right
parietal, premotor, and temporal cortices, and cerebellum. LCI
exhibited significant correlations with activity in the bilateral
dorsal premotor, parietal, supplementary motor area, and left
cerebellum. SR was correlated with activity in the left caudate
nucleus, bilateral occipital, and parietal cortices. AR had correla-
tions with activity in the bilateral prefrontal, premotor, parietal,
and occipital cortices, supplementary motor area, and right or-
bitofrontal cortex.

Figure 3A shows that the activity of the caudate nucleus signifi-
cantly correlated with LRI and SR. The caudate activity was stronger
on the left side probably because subjects used their right hand. In
Figure 3A, it is also observed that activity of the globus pallidus was
correlated with LRI, and activity of the dorsal premotor cortex and
SMA was correlated with LCI and AR. Importantly, the contiguous
voxels correlated with both LRI and SR in the entire brain were
located only in the dorsolateral bank of the lateral ventricle. Simul-
taneous correlation with LRI and SR is computationally essential for
reinforcement learning loci, because synaptic plasticity (LRI related)
should be induced by reward prediction errors (SR related). Further-
more, three-dimensional reconstructions of these LRI- and SR-
correlated voxels (Fig. 3D) were in good agreement with the three-
dimensional shapes of the caudate nucleus head and body, as well as
the globus pallidus. In the caudate nucleus, the correlation with LRI
was stronger in the ventral region and the correlation with SR was
confined to the dorsal part. In addition, the activity of the left lateral
cerebellum was correlated with LCI (Fig. 3B), and that of the orbito-
frontal and prefrontal cortices was correlated with LRI and AR (C).

Bold signal trends in the ventral caudate nucleus
The essential role of the ventral caudate nucleus in reward-based
behavioral change was also confirmed by a direct assessment of
neural activity that was measured as a Bold signal increase in each
Test block compared with the subsequent Control (baseline)
block. This analysis was conducted separately for each transition
rule (rules 1– 4). The activity in the ventral part of the left caudate

Table 1. The stereotactic coordinate and the peak t value within brain regions correlated with LRI, LCL, SR, and AR

ROI

Learning rate Learning convergence Short-term reward Accumulated reward

Stereotactic
coordinates

t
value

Stereotactic
coordinates

t
value

Stereotactic
coordinates

t
value

Stereotactic
coordinates

t
value

1 L SP �38, �79, 30 5.48 �22, �64, 52 13.14
2 R SP 23, �70, 36 6.86 34, �76, 35 4.34 26, �64, 47 7.41
3 L IP �11, �73, 38 7.54
4 R IP 10, �73, 38 7.54
5 L PM �32, 3, 53 7.54 �35, 5, 48 11.69
6 R PM 19, 20, 27 6.49 28, 0, 53 7.72 23, 0, 55 9.80
7 SMA �6, �9, 47 5.74 �3, �3, 47 9.17
8 L PF �30, 43, 7 7.21 �37, 32, 12 10.58
9 R PF 31, 49, 13 8.64 23, 46, 13 11.21
10 L OF �40, 43, �6 6.94
11 R OF 30, 43, �6 7.26 23, 43, �1 19.79
12 L CN �0, �3, 0 6.70 �16, �3, �18 3.79
13 R CN 12, 3, 10 5.87
14 L GP �14, �9, 2 6.08
15 R GP 12, �3, 5 5.40
16 L CB �30, �59, �35 5.74
17 R CB 34, �73, �25 7.13
18 R ST 41, �32, �2 7.47 52, �53, 8 8.56
19 L OC �25, �94, 8 6.09 �27, �64, 2 4.60 �19, �76, 22 12.65
20 R OC 26, �85, �5 6.19 26, �59, 2 4.20 15, �70, 23 8.82

The regions of interest (ROIs) were superior parietal cortex (SP), intraparietal sulcus (IP), dorsolateral premotor cortex (PM), supplementary motor area (SMA), prefrontal cortex (PF), orbitofrontal cortex (OF), caudate nucleus (CN), globus
pallidus (GP), cingulate cortex (CC), cerebeller cortex (CB), amygdala (AM), superior temporal lobule (ST), and occipital cortex (OC). L, Left; R, right.
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nucleus (11 voxels marked by asterisks in Fig. 3D) around the
peak (marked by P in Fig. 3D) of LRI correlation exhibited a
tendency to decrease during the tasks with all of the rules except
rule 4. The rate of decrease (the negative slope of the regression
using all of the data from the eight subjects) became smaller with
greater randomness of probability (Fig. 3E) (�0.022, �0.014,
�0.007, and �0.006 for rules 1– 4, respectively). These slopes
were significantly negative (�0) for rules 1–3 ( p � 0.05). Fur-
thermore, the average regressions for individual subjects, consid-
ering intersubject variance, confirmed that the slopes of rule 1
and rule 2 were significantly �0 ( p � 0.005) and also signifi-
cantly less than the slope of either rule 3 or rule 4 ( p � 0.005).
Correspondingly, there was also a decrease in LRI (Fig. 2) with
similar dependence on the randomness of probability (rules
1– 4). The curve fitting by exponential functions was statistically
significant (rules 1–3; p � 0.05) and also logical, because LRI is
positive by definition and approaches 0. The exponential decay
rates for rules 1– 4 were �0.134, �0.111, �0.031, and 0.009,
respectively. Thus, the analysis of Bold signal trends confirmed
that there was parallelism between the decrease in activity of the

caudate nucleus and that in behavioral change (LRI) for the four
different levels of learning difficulty (rules 1– 4). More specifi-
cally, the decrease in the Bold signal in the caudate nucleus as well
as the decrease in the magnitude of changes in button-push be-
haviors between the two neighboring terms were statistically sig-
nificant for only rules 1–3, in which learning was possible, and
their negative slopes became smaller as learning became more
difficult (rule 1 � rule 2 � rule 3 � rule 4).

Discussion
The most important finding in our study was that activity in the
ventral part of the caudate nucleus exhibited a strong correlation
with the magnitude of behavioral change during learning (instru-
mental conditioning). Bold signal analysis revealed parallelism
between the decrease in caudate nucleus activity and that in LRI
in wide variations in task difficulty (rules 1– 4). Among possible
cognitive elements that can be captured by LRI, our first concern
is the behavioral change in the context of the reinforcement
learning theory (Sutton and Barto, 1998), assuming that behav-
ioral change is guided by reward prediction errors. Experimental
evidence is now accumulating on the roles played by midbrain
dopamine neurons and the ventral striatum in representing re-
ward prediction error. Monkey neurophysiological studies dem-
onstrated that dopamine neurons in the monkey midbrain en-
code reward prediction errors (Hollerman and Schultz, 1998).
Human imaging studies using reward (classical conditioning)
tasks revealed that activity in the ventral striatum (Berns et al.,
2001; Breiter et al., 2001) and putamen (McClure et al., 2003;
O’Doherty et al., 2003) is correlated with the reward prediction
error. In the context of reward-based behavioral learning, com-
puting a subject’s reward prediction error is difficult, and no
attempt has ever been made to estimate it. Therefore, we took a
behavior-based approach and computed LRI only from subjects’
behaviors without making any additional assumptions. In the
framework of the reinforcement learning theory, LRI is expected
to reflect synaptic plasticity responsible for behavioral change,
which is a product of the reward prediction error, inputs for
behavior generation, and an adaptively changing learning coeffi-
cient. Therefore, LRI and reward prediction error may be corre-
lated but could be significantly different from each other. Our
results suggest that the caudate nucleus plays an important role in
behavioral learning guided by reward prediction error, which is
sent from the midbrain, as proposed in several computational
models (Houk et al., 1995; Montague et al., 1996).

It is probable that LRI-correlated brain activity also involves
higher cognitive functions, such as inference and hypothesis test-
ing about the task structure, although the stochastic decision task
was originally designed with the simple reinforcement learning
theory as the guiding principle. Because we expect that more
random tasks (rules 3 and 4) are more likely to invoke these
cognitive functions than simple tasks (rules 1 and 2), it is note-
worthy that, in the subtraction analysis, the activity in the cere-
bral cortical areas, including the dorsolateral prefrontal cortex,
tended to increase in accordance with the task difficulty (rules
2– 4). This may suggest that these cortical areas were partly in-
volved in such higher cognitive learning more than the caudate
nucleus. Related to the caudate activity correlation with LRI, Par-
kinson patients were reported to have difficulty in learning a
probabilistic decision-making task (Knowlton et al., 1996).

It was also remarkable that no overlapping correlation was
found between LCI and LRI, both of which are learning-related
variables. As learning proceeds, LRI decreases, while LCI in-
creases and saturates. Therefore, LRI and LCI may well corre-

Figure 3. Results from the correlation analysis. A, B, C, The numbers attached to the brain
loci are defined in Table 1. The red, green, blue, and yellow regions denote the voxels correlated
with LRI, LCI, SR, and AR, respectively. The color scaling of the t value is shown in the bar graphs.
A voxel correlated with two variables is represented as a mosaic of the two colors with black
outline. The frontal sections highlight the Talairach coordinates of the left caudate nucleus ( A),
left lateral cerebellum ( B), and right orbitofrontal cortex ( C), with thin horizontal and vertical
lines. D, Three-dimensional distribution of voxels correlated with LRI and SR within a rectangu-
lar parallelepiped (�18 � x � �9; �12 � y � 6; �3 � z � 24), where x, y, and z
represent the Talairach coordinates. CNH, CNB, and GP denote the head and body of the caudate
nucleus and the globus pallidus, respectively. P denotes the peak voxel correlated with LRI
whose location is (�9, �3, 0). The most ventral voxel correlated with LRI was located in the
plane of z � �3. E, Bold signal increase averages and SDs over 11 voxels and eight subjects.
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spond to initial nonroutine learning with attention and later rou-
tine behavior with less attention, respectively (Fig. 2C, LRI and
LCI). In the reinforcement learning interpretation, we note that
LRI corresponds to synaptic plasticity responsible for behavioral
changes, and LCI corresponds to memory consolidation for op-
timal behaviors. The LRI-correlated caudate activity is consistent
with reports that the anterior striatum was active and essential
when a monkey learned a new motor sequence (Miyachi et al.,
1997, 2002). LCI-correlated activity was found in the bilateral
dorsal premotor and intraparietal cortices, SMA, and left lateral
cerebellum. The dorsal premotor cortex and SMA exhibited ad-
ditional correlation with AR. This may indicate that these areas
are involved in the intermediate phase of learning by selecting an
appropriate action on the basis of the previous experience of
rewards. This view is consistent with the following human imag-
ing studies. In a positron emission tomography study, the preci-
sion of the subjects’ recall of a stimulus sequence was correlated
with the dorsal premotor cortex and supplementary motor area
activity (Honda et al., 1998). An fMRI study also reported activa-
tion of the SMA and precuneus in the intermediate and late stages
of motor sequence learning, respectively (Sakai et al., 1998). It is
also interesting that the locus for the LCI-correlated activity in
the left lateral cerebellum was close to that involved in learning
novel tool use (Imamizu et al., 2000) and possibly related to the
visuomotor transformation (internal model) that routinely maps
a visual input to an appropriate selection of behavior. This inter-
pretation is also supported by the subtraction analysis showing
that only the parietal cortex and cerebellum were activated in rule
1, in which the learning converged rapidly.

The results concerning reward variables (SR and AR) were in
good agreement with previous studies. Primarily, the dorsal part
of the caudate nucleus (Kawagoe et al., 1998) and orbitofrontal
cortex (Elliot et al., 2000) were correlated with SR and AR, respec-
tively. The small overlapped activation in the caudate nucleus by
SR and LRI can be explained by the difference in temporal char-
acteristics of LRI and SR; LRI represents a low-frequency decay-
ing component, whereas SR represents a high-frequency fluctu-
ating component attributable to stochasticity in the reward
schedule.
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