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Abstract

In supervised motor learning, where the desired movement pattern is given in task-
oriented coordinates, one of the most essential and difficult problems is how to convert
the error signal calculated in the task space into that of the motor command space. We
proposed the feedback-error-learning approach where the feedback motor command is
used as an error signal to train a neural network which then generates a feedforward
motor command. We successfully applied this approach to learning control in joint
space of PUMA, an industrial manipulator, trajectory control in visual coordinates
even when PUMA was given an extra degree of freedom, and Softarm with muscle-like
actuators (manufactured by Bridgestone Co.). I mathematically show that the feedback-
error-learning approach can be considered a Newton-like method in functional space.
Mathematical proof of the convergence of the feedback-error-learning control scheme is
provided both for trajectory stability and learning stability. The feedback-error-learning
neural network was originally proposed as a model for the lateral cerebellum and the
parvocellular part of the red nucleus. It will be shown that functions of other parts of
the cerebellum, such as the vermis or the flocculus, can also be understood from the
feedback-error-learning scheme.

1 Introduction

One of the features of the central nervous system (CNS) in its control of movement is the
capability of motor learning. For higher mammals, especially humans, supervised learning
is probably the most important class of motor learning. In nearly every case, the teacher
can not directly show the correct motor command to the student, but only can show the
desired movement trajectory.

Consider a neural network which receives a desired motor pattern and outputs a motor
command to realize the desired movement. The motor command is transmitted to the
musculoskeletal system and some particular movement is realized. The realized trajectory
1s measured by various sensory systems, and compared to the desired movement pattern
(teaching signal). If the teacher were to able to give the difference between the ideal motor
command and the actual motor command, various supervised learning rules could be used
to train the motor control network. However, since this is not possible, the problem of
converting the error from task-oriented coordinates to the motor command space is an
essential and difficult one. This problem was addressed by Jordan and Rumelhart (2] and
termed, “supervised learning with a distal teacher”. They proposed the forward and inverse
modeling approach to resolve the problem.

We proposed the feedback-error-learning neural network as a model of the lateral cere-
bellum and the parvocellular part of the red nucleus [5,6]. This model constitutes one
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possible answer to the above error conversion problem. In the next section, three represen-
tative computational schemes to resolve the problem are reviewed and compared. We then
mathematically formulate the feedback-error-learning approach as a Newton-like method
in functional space. Mathematical proof of the trajectory and learning convergence of
feedback-error-learning will be given. Finally, functional roles of various parts of the cere-
bellum are examined based on the feedback-error-learning.

2 Computational schemes to convert trajectory error
into motor command error

A perfect feedforward control can be realized if the feedforward controller provides an inverse
model] of the controlled object. Let us formulate this statement. § denotes an n-dimensional
vector which represents the body coordinates, such as joint angles or muscle lengths, of a
controlled object. 7 represents an m-dimensional vector of motor commands such as joint
torque or muscle tension. The state change of the controlled object is described by the
following ordinary differential equations.

do/dt = 6
dojdt = f(8,6,71), (1)

here f is an n-dimensional nonlinear vector function. z denotes a k-dimensional vector
representing the task-oriented coordinates of the controlled object, for example, the retinal
coordinates of the hand position. z is uniquely determined from 6 according to the following
nonlinear equation: z = G(f), here G is a k-dimensional nonlinear vector function.

The problem of feedforward control is to find the motor command 7,4(¢) which realizes the
desired movement pattern az4(1). First, the desired trajectory in body space is calculated
from that in task space: 64(t) = G7'(a4(t)). Second, the necessary motor command is
calculated from the desired trajectory, velocity and acceleration (Bd(t),éd(t),fjd(t)) as a
solution of the second equation of (1). Although this is an implicit equation with respect to
7, it is rewritten in explicit form as follows: 74(t) = h(8a(t), 84(t),04()). Consequently, in
this case, the motor learning problem is equivalent to acquisition of the conjoined inverse
kinematics model (IKM) and inverse dynamics model (IDM) A - G in the feedforward
controller.

In Fig. 1, I compare three computational approaches for learning the inverse model of
a controlled object. The simplest approach is shown in Fig. la. The controlled object
receives the torque input 7(t) and outputs the resulting trajectory @(t). The inverse model
1s oriented in the input-output direction opposite to that of the controlled object, as shown
by the arrow. That is, it receives the trajectory as an input and outputs the torque =(t).
The error signal s(t) is given as the difference between the actual torque and the estimated
torque: s(t) = 7(f) — 7(¢). This approach to acquiring an inverse model is referred to as
direct inverse modeling [2]. Fig. 1b shows the method of combining a forward model and
an inverse model, proposed by Jordan and Rumelhart [2]. First, the forward model of the
controlled object is learned by monitoring both the input 7(¢) and the output z(¢) of the
controlled object. Next, the desired trajectory z4(t) is fed to the inverse model to calculate
the feedforward motor command 7(¢). The resulting error in the trajectory z4(t) — z(t) is
back propagated through the forward model to calculate the error in the motor command,
which is then used as the error signal for training the inverse model.

Fig. 1c shows the feedback error learning approach [5]. The total torque 7(¢) fed to the
controlled object is the sum of the feedback torque 74,(¢) and the feedforward torque 77(1),
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Figure 1: Three computational schemes for learning inverse model of a controlled object:
a) Direct inverse modeling. b) Forward and inverse modeling. c) Feedback error learning
scheme.

which is calculated by the inverse model. The inverse model receives the desired trajectory
¢4 and monitors the feedback torque 77(t) for the error signal. It is expected that the
feedback signal tends to zero as learning proceeds. We call this learning scheme feedback
error learning to emphasize the importance of using the feedback torque (motor command)
as the error signal of the heterosynaptic learning.

In summary, the direct inverse modeling approach avoids the error conversion problem
by reversing the input and the output. The forward and inverse modeling approach converts
trajectory error into motor command error by backpropagation through the forward model.
In the feedback-error-learning approach the feedback controller converts trajectory error
into motor command error.

Direct inverse modeling does not seem to be used by the central nervous system. The
main reason is that after the inverse model is acquired, before it can be input from the
desired trajectory instead of the actual trajectory, large-scale connection changes must be
carried out while preserving minute one-to-one correspondence. In engineering applications,
one drawback of the direct inverse modeling approach seems to be that it does not necessarily
achieve a particular target trajectory z4(), even when the training period is sufficiently long.
In this sense, the learning is not “goal-directed” [2]. The forward and inverse modeling
approach of Jordan & Rumelhart is goal-directed because the error for learning is defined
as the square of the difference between the desired trajectory and the realized trajectory.
I will provide a mathematical proof that the feedback error learning approach is also goal-
directed. '

The direct inverse modeling method can not cope with the learning control of a redun-
dant controlled object. Jordan [2] clearly explained the reason for this in the one-to-many
inverse kinematics problem. The forward and inverse modeling approach can resolve the ill-
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posedness of the problem by learning performance index as synaptic weights in the inverse
model. Any feedback controller selects one specific motor command even for redundant
controlled objects. However, the desired trajectory can not be exactly realized by the feed-
back control alone. Because of the above-mentioned desirable characteristics inherent in the
feedback controller, the feedback error learning approach can realize the learning control of
controlled objects which are redundant either at the kinematics or dynamics level [3,4].

Kano et al. succeeded in learning trajectory control within the stereo camera coordinates
even when PUMA was given an extra degree of freedom [3]. In this study, the feedback
controller calculated the feedback motor command by multiplying the error in the visual
coordinates with the Moore-Penrose pseudoinverse of the coordinate transformation. Be-
cause the pseudoinverse matrix finds the solution with the smallest norm, this method is
closely related to our minimum motor-command change criterion.

Katayama et al. solved the ill-posed inverse dynamics problem for an arm-like manipu-
lator (Bridgestone Soft Arm) with rubbertuators which are air driven, muscle-like actuators.
Because each joint contains agonist and antagonist rubbertuators, there is no unique solution
to determining tensions to realize a particular joint angle movement. In this experiment,
we obtained a roughly minimal muscle-tension change trajectory with the feedback-error-
leaning scheme [4].

3 Feedback-error-learning as a Newton-like method in
functional space

The inverse dynamics problem is to calculate the required motor command 74(t) so that
the desired trajectory 64(¢) in the body space is realized. The dynamics of the controlled
object is described by (1). The Newton method is first described. It is more convenient to
restrict the inverse dynamics problem to that in a finite time interval [0,7]. A functional
F(7) = 84— 0(7) is defined as a mapping from a function space = = [0,T] of the motor
command to a function space @ = C?[0, T'| of the body space trajectory. The first derivative
of F' can be computed through the solution of the following variational equation:

Fl(r)ér = Jér = 6. (2)

d(88)/dt = &8, 88(0) =0,

d(s6)/dt = Of(6,8,7)/06- 66+ 0F(6,6,7)/96 - 56
+0f(8.6,7)/07 - 67, 66(0) = 0. (3)

According to the Newton method, we can calculate the motor command error from (3) as
follows:

5t = F"(r)88
= (0f(9,6,7)/0r){-0f(6,6,7)/08 - 69 — Df (6,8, 7)/6 - 56 + 66}, (4)

Although this equation looks quite complicated, it must be emphasized that all calculation
can be done by differentiation of the body space error 66 = 6, — # and matrix calculation.
However, because we do not know the dynamics of the controlled object (Le. f), we can
not use this Newton method. A quite general solution to this difficulty is the Newton-like
method which approximates F'~! by some simpler operator M. One apparent candidate is
the following:

6t = M(80) = Kp(0; — 0) + Kp(8a— 6) + K (6, — 6). (5)
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This approximation is validated since the product factor (8f(6,6,7)/87)" in the third
term of (4) corresponds to the inertia matrix which is symmetrical, and positive definite.
Furthermore, in the simplest case, the product factor —(8f(6, 6, )/87)"'0f(8,6,1)/06 of
66 in the second term of (4) corresponds to a viscosity coefficient. Similarly, the product
factor —(0f(8,8,7)/87)"'0f(8,6,7)/08 of 60 in the first term of (4) corresponds to the
stiffness of a vutual spring. Thus, all three factors can be approximated by positive diagonal
matrices Ap, RKp and K4, which can be regarded as gains of proportional, differentiation
and acceleration feedbacks, respectively. Thus, the PDA feedback controller can calculate
6t as a Newton-like method. The feedback error learning which uses the feedback motor
command as the error signal to modify the feedforward motor command was originally
proposed by us [5,6].

In the forward and inverse modeling, the forward model provides a dynamical model
of the controlled object. Thus, the backpropagation through the forward model is also a
dynamical process which is described by differential equations. On the other hand, the
feedback-error-learning scheme utilizes a linearized approximation of the inverse dynamics
model (i.e. feedback controller) which can convert trajectory error into motor command
error by relatively simple computation.

4 Stability of feedback-error-learning scheme

In this section, stability of the feedback-error-learning scheme is proved for a learning control
system shown in Fig. 1c. The dynamics of the controlled object is described by (1). In this
section, we consider only the inverse dynamics problem without kinematics. Further, we
treat a simple case where f is invertible for clarity. Hence, the dynamics of the controlled
object can be described as follows: 7 = h(#,8,6). The total torque fed to the controlled
object is the sum of the feedback torque 74, calculated by a PDA feedback controller and
the feedforward torque 7;; calculated by the neural network IDM.

h(g,é, 9) =T = be + Tff = [‘L-pf - IX'Dé + I\'Aé + Tff, (6)

here £ = 8, — . The neural network IDM calculates 745 from the desired trajectory 8, and
the synaptic weights w: o

Tfr = w(w,ﬁd,ﬂd,ﬂd). (T)
The shape of the function ¥ depends on the kind of neural network model used for the
IDM. Here, I assume that an appropriate neural network model is chosen and that it can
realize the exact inverse dynamics for an optimal set of synaptic weights :

h(8,8,8) = ¢(w,6,6,8). (8)

The synaptic modification rule of the feedback-error-learning scheme is represented in a
general manner as follows:

dw/dt = (8155 0w) 75, (9)
Because this expression is quite general, it includes several learning rules for a prepared-
nonlinearity neural network and MLP which we used in previous studies (3,4,5,6].

Substituting (7) and (8) into (6), we obtain the following equation.
Timag = Ty = Tff

Y(, 84,84, 04) — ¥(w,04,84,64)
»(,84,64,04) — h(8,0,6) + 74,
h(B4,04,04) — h(d, 8, é) + T
Ah(62,6,€,€) + 7, (10)
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, here 7,.,,, is an imaginary torque which is fed to an imaginary dynamical system described
by the last expression of (10). The imaginary torque Tim,, is generated by an estimation
error of @ by w. If w = w then 7,,,, = 0 for any 8,. The last expression defines an imaginary
dynamical system which is a combination of the variational system of the controlled object
around the desired trajectory 6; and the feedback controller with the input 7.,

Ah(84,€,€, &) + Kp€ + Kpé + Kal = Tonag. (11)

This equation (11) defines an imaginary nonautonomous dynamical system with respect
to £ with the input 7,,,,. Here, I make the first assumption about the stability of this
imaginary dynamical system.

Assumption 1 If 7,,,,, = 0, then the solution € of (11) will tend 10 0 ast goes to infinity.

Thus, global asymptotic stability of the origin of (11) for zero input is assumed here. We
make the second assumption about the feedback motor command 7.

Assumption 2 7y, is approzimately proportional {0 ATima, with 0 < A < 1.

This assumption can be justified in two different ways. Let us consider an expansion of the
imaginary dynamical system (11).

(Ka+ 0h(64, 6, é;)/aé)_é' + (Kp+ 0h(84,64,8,)/00)E + (Kp + Oh(04, 04, 6,)/00)¢
+O(£!£l£) =  Timag, (12)

here o(£,£,€) is a higher order term in £, and hence a small order compared with the linear
terms for small £. If the feedback gains are sufficiently large compared with the partial
derivatives of h, then Assumption 2 holds with A = 1. If these feedback gains are chosen
as in (4) so that the feedback-error-learning scheme becomes a good approximation of the
Newton method as described in the previous section, then Assumption 2 holds with A 22 1/2.
The following function V' is examined as a candidate of the Liapunov function.

V=12 erl timag2 U (13)

The equality of (13) holds only when w = 1 for nontrivial 8,. It is quite natural to assume
that 6; 1s not always zero. I calculate the time derivative of V.

dV/dt = 71 0Timeg/Ow  dw/dt + dV/di
= el =071 /w0741 Ow) 7, + dV/di
= fiz;ng{—ﬁrff/aw}(afff/f)w)TAﬁmag + dV/df

= —M(0741/0w) Tumag} {(O75¢ ) Ow) Timag} + dV/di, (14)

here dV/df is the partial derivative of V with respect to the time ¢ while fixing w constant.
Thus, it can be expressed as follows:

dV/di = 0V /80,484 + OV/00y -8, + OV/08, - db,/dt (15)

Now, I average the rate of change of V for a time interval which is shorter than the time
constant of change of w but much longer than the mixing rate of the desired trajectory @,.
Thus, the rate of change of w is assumed much slower than that of §,. Then, if §; is a
strongly stationary stochastic process, the time average of the second term of (14) vanishes
since V is regarded as a Baire function of the strongly stationary process.

dV/dt = dV/di = 0. (16)
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This is because, when w is constant, V' is a function of 6, alone. Then, from the definition
of the strongly stationary stochastic process, the average of V' is constant. Consequently
we obtain:

dVjdt = '")‘{(a"'ff/a'w)TTimag}T{(6Tff/aw)TTimag} <0 (17)

The equalities of (17) and (13) hold only when w = 4 for nontrivial 8,. Consequently, I can
conclude that w asymptotically converges to the optimal set of synaptic weights w. Then,
because Timag = 0 for w = w, 6 asymptotically converges to 8, based on Assumption 1.

5 Feedback-error-learning neural network as models
of different parts of cerebellum

The cerebellum is divided into separate sagittal regions with distinctive anatomical con-
nections although the cellular organization of the cerebellar cortex is simple, regular and
uniform. These divisions form three functionally distinct parts of the cerebellum: the
vestibulocerebellum, the spinocerebellum, and the cerebrocerebellum [1].

The cerebrocerebellum is the lateral zone of the cerebellum. Its inputs originate ex-
clusively in pontine nuclei that relay information from the cerebral cortex, and its output
is conveyed by the dentate nucleus to the thalamus and then to the motor cortex. The
feedback-error-learning neural network was originally proposed as a model for the cerebro-
cerebellum and the parvocellular part of the red nucleus [5,6]. Fig. 2¢ shows this model
of the lateral part of the cerebellar hemisphere. In this figure, the feedback controller and
the summation of the feedforward and feedback command reside in the motor cortex of the
cerebrum. The feedback loop is the transcortical loop. The desired trajectory is sent to the
cerebellum and the motor cortex from the association cortex. The output of the cerebellum
1s sent back to the motor cortex via the thalamus.

The spinocerebellum includes the vermis at the midline and the intermediate zone of
the hemispheres. These two regions are the areas of the cerebellum that receive sensory
information from the periphery. The vermis is related to control of posture. Gomi and I are
now proposing a closed loop control system based on the feedback error learning as shown
in Fig. 2b. It can be considered as a model of the vermis.

The vestibulocerebellum occupies the flocculonodular lobe. Flocculus is known to play a
role in adaptive modification of the vestibulo-ocular reflex [1]. Its circuit diagram is shown
in Fig. 2a. Although this circuit does not contain any feedback controller, the visual system
measures the combined eye and head velocity and plays a role In converting trajectory error
into the motor command error. Consequently, the function of the flocculus can also be
understood from the feedback-error-learning concept.
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