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Abstract 

Although the cerebellum is widely associated with supervised learning algorithm, abundant reward-related 

representations were found in the cerebellum. We ask the question whether the cerebellum also implements 

reinforcement learning algorithm, especially the essential reward-prediction error. By tensor component 

analysis on two-photon Ca2+ imaging data, we recently demonstrated that a component of climbing fiber 

inputs in the lateral zones of mouse cerebellum Crus II represents cognitive error signals for Go/No-go 

auditory discrimination task. Here, we applied the Q-learning model to quantitatively reproduce Go/No-go 

learning behaviors, as well as to compute reinforcement learning variables including reward, predicted 

reward and reward-prediction error within each learning trial. Climbing fiber inputs to the cognitive-error 

component are strongly correlated with the negative reward-prediction error, and decreased as learning 

progressed. Assuming parallel-fiber Purkinje-cell synaptic plasticity, Purkinje cells of this component could 

acquire necessary motor commands based on the negative reward-prediction error conveyed by their 

climbing fiber inputs, thus providing an actor of reinforcement learning. 
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Introduction 

Reinforcement learning algorithms have made significant progress in recent years (Sutton and Barto, 2018; 

Barto et al., 1983; Lecun et al., 2015), with a number of notable successes in video games (Mnih et al., 

2015; Wurman et al., 2022) and GO games (Silver et al., 2016). However, AI still struggles with learning 

control of robots (Atkeson et al., 2018). Studying reinforcement learning in the brain can inspire the 

development of new AI algorithms that can learn more efficiently and adapt to changing environments. 

Traditionally, the cerebellum has been thought to implement a supervised learning algorithm (Marr, 1969; 

Albus, 1971; Ito ,1969; Kawato et al., 1987; Kawato and Gomi, 1992; Wolpert et al. 1998; Kawato, 1999), 

with the dopamine neurons in the basal ganglia being the center for a reinforcement learning algorithm 

(Schultz et al. 1997; Bayer and Glimcher 2005; Haruno and Kawato, 2006; Pessiglione et al., 2006; Akiti 

et al. 2022; Amo et al., 2022). Despite a vast amount of evidence that supports these theories (Shidara et 

al., 1993; Medina et al., 2000; Medina and Lisberger, 2008; Haruno et al. 2004; Doya 2000; Kaplan et al., 

2020; Dabney et al. 2020; Starkweather and Uchida, 2020; Kawato and Samejima, 2007; Raymond and 

Medina, 2018; Kawato et al., 2020), recent studies have uncovered the presence of reward-related variables 

in both mossy-fiber-granule cell pathway and climbing fibers, two major excitatory inputs to the cerebellar 

cortex. On one hand, it has been reported that subsets of granule cells are activated by either reward 

prediction, reward delivery or reward omission during conditioning behaviors (Wagner et al., 2017) and 

that Purkinje cell simple spikes convey error signals of reward outcome (Sendhilnathan et al., 2020). On 

the other hand, climbing fibers also encode those reward-related signals (Heffley et al., 2018; Heffley and 

Hull 2019; Kostandinov et al., 2019; Larry et al., 2019; Sendhilnathan et al., 2021). Interestingly, such 

association between climbing fibers and reward variables is found to be dependent on zonal organization 

of the cerebellar cortex (Kostandinov et al., 2019; Tsutsumi et al., 2019). Furthermore, recent anatomical 

studies revealed that the cerebellum has reciprocal connectivity with the reward circuitry (Bostan and 

Strick, 2018; Carta et al., 2019; Wagner et al., 2019; Chabrol et al., 2019). All of these studies suggested a 

potential role of the cerebellum in reward processing (for reviews, see Wagner and Luo, 2020; Kawato et 

al., 2020; Kostadinov and Häusser, 2022), and in several reinforcement learning tasks that are driven by 
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reward and penalty. However, it is still unknown whether the reward-prediction error, which is essential 

for reinforcement learning algorithm (Dabney et al. 2020; Amo et al., 2022; Starkweather and Uchida, 

2020), is represented within the cerebellum or the cerebellum also implements reinforcement learning 

algorithm. 

 

The cerebellar cortex is divided into zones, each of which possesses expression patterns of specific 

molecules such as aldolase-C (Sugihara and Shinoda, 2004, 2007). In our recent study, we examined two-

photon Ca2+ imaging data of climbing fibers in eight aldolase-C zones (7+ to 4b-) from Crus II of mice 

cerebellum during the Go/No-go auditory discrimination task (Tsutsumi et al., 2019). The task is one of the 

reinforcement-learning tasks driven by reward and penalty. Hyper-resolution spike timing estimation 

algorithm (Hoang et al., 2020) and tensor component analysis (Williams et al., 2019) revealed that a 

component of climbing fiber inputs in the lateral zones represent cognitive error signals of this learning 

(Hoang et al., 2022). Among 8 aldolase-C positive and negative zones, zones 5-, 6+ and 6- contain this 

component most densely. In the present study, we utilized a formal reinforcement learning algorithm, 

namely Q-learning (Watkins and Dayan, 1992), to reproduce learning behaviors as well as to compute 

reinforcement learning variables such as reward, predicted reward and reward-prediction error within each 

learning trial. This simple Q-learning model with minimal number of hyper-parameters well reproduced 

learning behaviors of individual mice during Go/No-go tasks. We found that climbing fiber inputs to zones 

5-, 6+ and 6- as well as the component of cognitive errors in the lateral zones are strongly correlated with 

the negative reward-prediction error. Assuming the long-term depression (Ito and Kano, 1982; Hirano 1990; 

Ito 2001) and long-term potentiation (Linden 1999; Hirano, 2013) of parallel-fiber Purkinje cell synapses 

of the component, Purkinje cells of this component could provide an actor (Barto et al., 1983) of 

reinforcement learning. That is, they can acquire necessary motor commands based on the negative reward-

prediction error conveyed by their climbing fiber inputs.  
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Results 

Q-learning model of licking behavior 

We employed a Q-learning algorithm to model licking behavior of mice in the Go/No-go experiment (Fig 

1A). The Q-learning model was selected because it is one of the simplest reinforcement learning algorithms, 

which are based on state-action value functions rather than state value functions, with a small number of 

hyperparameters. Briefly, mice were trained to distinguish two auditory cues by either lick or no-lick within 

a response period of 1s after cue onset to obtain liquid reward. The reinforcement-learning-algorithm state 

s is determined by the two auditory cues (s = Go / No-go), and the reinforcement-learning-algorithm action 

a is determined by lick within the time window of [0, 1] s after the auditory cue (a = Lick / No-lick). A 

reward value R-P was assigned according to cue-response conditions, including HIT trials (lick after Go 

cue) in Go task (R-P = 1), false alarm trials (FA, lick after No-go cue, R-P =−𝜉, 0 ≤  𝜉 ≤ 1), correct rejection 

trials (CR, no lick after No-go cue, R-P = 0) and MISS trials (no lick after Go cue, R-P = 0). Note that the 

R-P value for FA trials was constrained to be negative because a lick after a No-go cue was punished with 

a timeout of 4.5 s, while that of CR and MISS trials were 0 because neither reward nor penalty was given 

in those trials. The Q-learning algorithm assumed that a reward prediction Q was computed as a function 

of the two variables s and a; state and action. At each trial, a reward prediction error 𝛿𝑄, a difference 

between reward R-P and Q, was used to update computation of Q in the next trial with a learning rate 𝛼. 

For action policy, we used the softmax function with a single temperature parameter 𝜏 to convert the Q 

values into a probability distribution over the two possible actions; Lick and No-lick. Since the mice had 

undergone pre-training sessions lasting 3 days, when they were always rewarded with a lick within 1 second 

for both cues, the initial Q values for both Go and No-go cues were positive (0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1, for Go 

and No-go cues respectively, see Methods for details). It is important to note that we did not explicitly 

model the time course within trial as in previous studies (e.g., Schultz et al., 1997). Instead, we assumed 

the single timing of cue representation for computation of Q and 𝛿𝑄, which precedes the timing of reward 
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delivery by about 500 ms. We will later discuss implications of this assumption on timing for possible 

neural computations.    

 

Behavioral data indicated that the lick rate in HIT trials were high early in time (average and standard 

deviation of lick latency, 0.25 ± 0.15 s, Fig 1B) and extended over the reward delivery period (liquid 

rewards were delivered three times at 0.41, 0.82, and 1.23 s after the first lick). By contrast, the lick rate in 

FA trials was also high early in time initially of learning (average and standard deviation of lick latency, 

0.31 ± 0.23 s), but it gradually reduced to baseline because no reward was given for No-go cues. We fitted 

the Q-learning model to the licking behavior of individual mice (n = 17) in a total of 26,517 trials. The 

fitting performance was good for both the Go and No-go trials, which showed an increase in fraction correct 

and a decrease in fraction incorrect, respectively, at both the population (Fig 1C) and individual (Fig 1D) 

levels (average and standard deviation of coefficient of determination of 17 mice, 0.87 ± 0.15 for Go cue 

and 0.61 ± 0.18 for No-go cue, respectively, see Methods for details). The hyperparameters estimated for 

individual mice were broadly distributed (average and standard deviation; 0.002 ± 0.002 for 𝛼, 0.12 ± 0.07 

for q1, 0.24 ± 0.17 for q2, 0.14 ± 0.07 for 𝜏, and 0.84 ± 0.24 for 𝜉, Fig 1E), indicating that each animal 

utilized a distinct strategy for optimally learning to obtain the reward. As temporal evolution of the reward-

related variables with discrimination learning, the Q values for both cues and lick (s=Go / No-go and 

a=Lick) were positive and intermediate initially, then increased for HIT trials (s=Go and a=Lick) and 

decreased toward negative values for FA trials (s=No-go and a=Lick) as learning progressed (Fig 1F). Note 

that the negative Q value for FA trials at the later stage of learning well reflected the negative R-P value 

assigned for those trials by the Q-learning model. As a consequence, the 𝛿𝑄 values converge to zero for 

both cue-response conditions (Fig 1G). More specifically, the 𝛿𝑄 values for HIT trials (s=Go and a=Lick) 

were positive initially and monotonically decreased during learning. By contrast, the initial 𝛿𝑄 value for 

FA trials (s=No-go and a=Lick) was negatively large because of a large difference in negative reward R-P 

and the initial positive value of reward prediction q2>0. Throughout the course of learning, this 𝛿𝑄 value 
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monotonically increased (decreased its magnitude) to zero, indicating a better agreement between negative 

R-P and Q values. For CR and MISS trials, both Q and 𝛿𝑄 remained constant at zero. 

 

 

Figure 1: Q-learning model of Go/No-go experiment. A: schematic of the Q-learning model. B: the 

averaged lick rate for the four cue-response conditions (blue, red, orange and magenta for HIT, FA, CR 

and MISS trials, respectively: see also inset for color codes). Solid and dashed vertical lines indicate the 

cue onset and response window (1s after cue), respectively. Light cyan shadings represent the window for 

reward delivery (0.5 - 2 s after cue). C-D: fraction correct for Go cue (blue) and fraction incorrect for No-

go cue (red) for experimental data (solid lines) and Q-learning model (dashed lines), averaged for 17 mice 

in 7 training sessions (C) and for individual mice (D). Vertical bars in C show standard errors. E: 

hyperparameter values of Q-learning model estimated for individual mice (1~17); and from left to right 

and top to bottom, learning rate 𝛼, initial Q values for Go and No-go cues, q1 and q2, respectively, 
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temperature 𝜏, and punishment value for FA trials 𝜉. F-G: evolution of Q (F) and 𝛿𝑄 (G) of a representative 

mouse for the four state-action combinations (HIT, FA, CR, MISS) during the course of learning.  

 

Zonal climbing fiber responses and their correlations with reward prediction error 

While mice learn Go/No-go discrimination tasks, we conducted two-photon recordings of climbing fiber 

responses (sampling rate, 7.8 Hz) from 6,445 Purkinje cells in eight cerebellar zones (from 7+ to 4b-, see 

Methods for details). A hyper-resolution algorithm (HA_time, Hoang et al. 2020) was applied to estimate 

the spike timings at the resolution of 100 Hz. Similar to the previous work (Hoang et al. 2022), we studied 

CF firing activity as population peri-stimulus time histograms (PSTHs) sampled in the three learning stages 

(from top to bottom, 1st, 2nd, and 3rd stages with fraction correct <0.6, 0.6 - 0.8, 0.8<, respectively, Fig 

2A) for the four cue-response conditions, or the corresponding four state-action combinations. Briefly, CF 

responses in HIT trials (n = 3,788) were large and distributed across the entire medial hemisphere at the 

initial learning stage, but later on (2nd and 3rd stages), they became stronger and compartmentally focused 

on positive zones. By contrast, PSTHs in FA trials (n = 1,757) were distributed almost across the entire 

Crus II and gradually decreased and were more confined within lateral zones along with learning. PSTHs 

for CR trials (n = 2,229) were mainly distributed within zones 6- and 6+, and there was only spontaneous 

CS activity in MISS trials (n = 201).  

 

Our previous study demonstrated that CF responses in the lateral hemisphere represent cognitive error 

signals related to No-go cues (Hoang et al., 2022). Therefore, in the present study, we analyzed trial-by-

trial correlations between CF firings in zones 6-, 6+ and 5- with the reward prediction error 𝛿𝑄 for FA 

trials. As expected, on a trial basis, we found that CF firings, defined as the mean firing rate in 0 - 0.5 s 

after cue onset, in these three zones were negatively correlated with 𝛿𝑄, with the strongest correlation found 

for zone 5- (slope = -0.53, p < 0.01 for 6-, slope = -0.60, p<0.001 for 6+ and slope = -0.76, p < 0.0001 for 

5-, Fig 2B-D). The temporal window of 0 - 0.5 s for calculation of the mean firing rate was selected because 
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CF firings in FA trials of these three zones were mostly confined within 0 - 0.5 s after the cue onset (Fig 

2A).   

 

 

Figure 2: Climbing fiber responses to cues and their correlation with reward prediction error. A: Heat-

maps showed PSTHs of climbing fiber firings in 8 Ald-C zones (7+ to 4b-) in the four cue-response 

conditions (columns) and three learning stages (rows, 1st, 2nd, and 3rd stages with fraction correct <0.6, 

0.6 - 0.8, 0.8<, respectively). The blue line indicates cue onset. B-D: correlation of firing activity of Ald-C 
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zones 6- (B), 6+ (C) and 5- (D) with 𝛿𝑄 in the FA trials. Each dot represents each trial of 17 mice. The 

Figure 2A was reproduced from (Hoang et al. 2022). 

 

Partial Least-Squares regression of zonal activity with reinforcement-learning and sensorimotor-

control explanatory variables 

The previous analysis was constrained to only three zones and δQ. Here, we systematically studied the 

correlations between the firing activity of neurons in all eight cerebellar zones with reward as well as 

sensorimotor variables by partial least-squares regression (PLS regression) to find meaningful correlations 

under the situation of multicollinearity between explanatory variables (range of correlations between 

explanatory variables, 0.12 ± 0.23 with the highest correlations found for R vs. Q and R vs. δQ as 0.82 and 

0.78, respectively). For this purpose, the neuronal activity in each trial was defined as the mean firing rate 

in [-0.5, 2] s after cue onset of the neurons in the same Ald-C zone. For explanatory variables, we included 

R, Q, δQ as reward variables, and lick count in the three response windows ([0, 0.5] s for early lick - ELick, 

[0.5, 2] s for reward lick - RLick and [2, 4] s for late lick - LLick) for Go and No-go cues, separately, as 

sensorimotor variables. Here, we prepare 6 sensorimotor variables (2 ✕ 3=6; Go vs No-go multiplied by 

three response windows of licks) as shown in the inset of Fig. 3. Note that these three response windows 

well correspond with licking behavior of mice as well as reward delivery period (Fig 1B). Because these 

sensorimotor variables span large temporal windows of 0 - 4 s after the cue, the mean firing rate was 

computed for the comparable large temporal window of [-0.5, 2] s after the cue onset. We further note that 

the physical reward R (R=1 for HIT trials, R=0 otherwise), which was used as one of explanatory variables 

of PLS regression, is different from the reward-punishment R-P used in the Q-learning model (see Methods 

for details).  

 

We calculated the variable importance in projection scores (VIP scores) to quantitatively estimate the 

importance of a given explanatory variable to the PLS regression model (see Methods for details). We 
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found that neurons in the lateral hemisphere were associated with Q and 𝛿𝑄, but not the reward R per se 

(Fig 3). More specifically, 6- and 6+ were strongly associated with Q (VIP score, 1.8 and 1.7 for 6- and 6+, 

respectively), while 6- and 5- was strongly associated with 𝛿𝑄 (VIP score = 1.6 and 2.1 for 6- and 5-, 

respectively). We note that the VIP score does not provide the sign (positive or negative) of correlations, 

but the explanatory variables, whose VIP scores are larger than 1, are generally considered meaningfully 

important in PLS regression. Note that these results are consistent with the results of simple correlation 

analyses shown in Fig. 2B-D. By contrast, neurons in the medial hemisphere (5+ to 4b-) were strongly 

associated with the reward R (VIP score > 1.2). Notably, we also found a complicated association between 

zonal activity and sensorimotor variables (i.e., licking following two cues). That is, medial zones were 

associated with the lick number in the reward period (Go ✕ RLick and No-go ✕ RLick, VIP score > 1) while 

those in the lateral hemisphere (7+ and 5-) were associated with the lick number in the reward period 

following No-go cues (No-go ✕ RLick, VIP score = 1.1 for both 7+ and 5-, respectively). Only zone 7+ 

was associated with late lick following Go cues (Go ✕ LLick, VIP score = 1.1).  

 

 

Figure 3: Partial least squares regression of spiking activity and reinforcement-learning and sensorimotor-

control variables. Bars showed the variable-importance-in-prediction (VIP) scores of 9 reinforcement-
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learning and sensorimotor-control variables (from left to right, R, Q, 𝛿𝑄, Go ✕ ELick, No-go ✕ ELick, Go 

✕ RLick, No-go ✕ RLick, Go ✕ LLick, No-go ✕ LLick) for spiking activity of neurons in 8 Ald-C zones. 

Dashed lines indicated VIP score = 1, which is considered a threshold of importance. See the inset for 

color codes of the 9 explanatory variables. 

 

The generative model of spiking activity at a trial basis by tensor component analysis 

The PLS regression shown in Fig 3 suggested a functional organization of CF responses, moderately 

constrained by the zonal structure, with respect to sensorimotor and reward processing. In the previous 

study, we conducted the tensor component analysis (TCA) for CF PSTHs of >6,000 PCs and found four 

well separated components (TC1-4) that explained more than 50% of variance of PSTHs (Fig 4A, see 

Hoang et al. 2022 for details). One of the reasons why relatively moderate anatomical distributions of 

different functions are found in Fig. 3 is that each zone and even each neuron contain multiple functional 

components as demonstrated in Hoang et al. (2022) as well as in previous studies demonstrating 

multiplexed representations (Markanday et al. 2021; Ikezoe et al. 2022). In order to overcome this difficulty 

due to multiplexing for revealing precise functions of each component, we next examine functional 

representations of each tensor component utilizing Q-learning and trial-based analyses, while incorporating 

timing information of each spike instead of broadly computing the average spike rate over a wide temporal 

window. 

 

In this study, we used TCs as a generative model of spiking activity at trial basis for elucidating the 

associations of functionally organized CF responses and reinforcement-learning and sensorimotor-control 

variables. Briefly, the TC score of a neuron in a particular trial was estimated by filtering the spike train of 

that neuron by the temporal profile of the corresponding TC, weighted by neuronal and cue-response 

condition coefficients (Fig 4B, see Methods for details). This computation incorporated trial-to-trial 

variability of spiking activity while maintaining fundamental properties of TCs. For example, the neurons, 

whose TC1 and TC2 coefficients were highest among all the neurons recorded, had high TC1 and TC2 
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activities in HIT and FA trials, respectively (Fig 4C-D). Note that TC1 and TC2 were selectively activated 

in HIT and FA trials, respectively (Fig 4A). Following such a computation, the averaged TC activity of all 

neurons in the same recording session shared a similar structure of zonal distribution and cue-response 

condition with those of the TCs (compare Fig 4A and Fig 4E, but note that abscissae are learning stages 

and cue-response conditions, respectively). Specifically, TC1 scores were high in HIT trials and for positive 

zones. By contrast, TC2 scores were high in FA trials and distributed in the lateral hemisphere. TC3 scores 

were high in HIT trials and distributed in the medial hemisphere. TC4 scores had similar zonal distribution 

with TC2 scores, except that they were non-zero only for CR trials. 

 

 

Figure 4: Tensor-component analysis (TCA) and computation of tensor score at a trial-basis. A: TCA was 

conducted for PSTHs in 4 cue-response conditions of n=6,775 neurons and the resulting four tensor 

components (TC1-4) explained more than 50% of variance. B: for the i-th single neuron, its activity for the 

r-th TC (yr) in the particular j-th trial was computed by filtering spike timings with temporal profile of the 

r-th TC 𝑏𝑡
𝑟, multiplying corresponding coefficients 𝑤𝑖

𝑟 of the i-th neuron and 𝑎𝑐
𝑟 of the cue-response 
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condition c. C-D: PSTHs (C) of two representative neurons, which have the highest coefficients of TC1 and 

TC2, respectively, and their TC1 and TC2 scores, respectively, computed for all trials in their 

corresponding sessions (D). E: Heatmaps showed TC1-4 scores averaged for all neurons in each of the 

eight zones distinctively for the four cue-response conditions 

 

Sparse canonical correlation analysis 

To find the most contributing variables for each TC score, we conducted the sparse canonical correlation 

analysis (sCCA) of TC scores and the same 9 reinforcement-learning and sensorimotor-control variables 

used in PLS regression (see Methods for details). As a result, TC1 and TC3 were associated with only 

reward variables while TC2 and TC4 were associated with both reward and sensorimotor variables in No-

go trials (Fig 5A). More specifically, TC1 and TC3 were positively correlated with reward R, reward 

prediction Q and also reward prediction error 𝛿𝑄, with high coefficients of R and Q for TC1 (0.66 and 0.62) 

and R for TC3 (0.78). We can safely state that TC1 is mainly related to reward and its prediction, and that 

TC3 is mainly related to reward. Remarkably, TC2 was negatively correlated with 𝛿𝑄 (coefficient, -0.83) 

but it was positively correlated with the early lick count in No-go trials (0.42). Similarly, TC4 was 

negatively correlated with both R (coefficient, -0.65) and early lick count in No-go trials (-0.59). We note 

that those associations revealed by sCCA can also be found by PLS regression (Fig S1), thus they are not 

dependent on specific analysis methods. We further confirmed significant correlation for each of TC 

components by linear regression of TC1 vs. Q (slope = 0.46, p < 0.0001, Fig 5B), TC2 vs. 𝛿𝑄 (slope = -

0.42, p < 0.0001, Fig 5C), TC3 vs. R (slope = 0.30, p < 0.0001, Fig 5D) and TC4 vs. No-go ✕ ELick (slope 

= -0.24, p < 0.0001, Fig 5E). Notably, these correlations were also significant (p < 0.0001) with comparable 

slopes even when using only the trials of the cue-response condition with which each of TCs is mostly 

associated (slope = 0.32 for TC1-HIT, slope = -1.24 for TC2-FA, and slope = -0.36 for TC4-CR trials, Figs 

5BCE).     
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Figure 5: Sparse canonical-correlation analysis (sparse CCA) of TC scores and reinforcement-learning 

and sensorimotor-control variables. A: Bars showed the coefficients of reinforcement-learning and 

sensorimotor-control variables corresponding to TC1-4 scores. B-E: the scatter plots of trials showed 

correlations of TC1 with Q (B), TC2 with 𝛿𝑄 (C), TC3 with R (D) and TC4 with No-go ✕ ELick (E) at trial-

basis. Black and gray lines indicated regression between variables when using all trials and the trials of 

the cue-response condition with which each of TCs is mostly associated (i.e., TC1-HIT, TC2-FA and TC4-

CR), respectively. Panel D showed the boxplot with gray lines indicating the median and the bottom and 

top edges of the box the 25th and 75th percentiles, respectively. Note that the correlations in B-E are all 

significant (p<0.0001). Color convention of trials is the same as Figure 1. The inset of A shows color codes 

of the selected 6 reward and sensorimotor variables among 9 according to sCCA. 
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Discussions 

In the present study, we conducted three different correlation analyses for elucidating contributions of CF 

inputs to behavior during learning of Go/No-go auditory discrimination tasks. In the first analysis, we 

showed associations between lateral zones and reward prediction error, which were suggested by our 

previous work demonstrating that the CF responses in zones 6-, 6+ and 5- convey cognitive error signals 

(Hoang et al. 2022). Since Tsutsumi et al. (2019) suggested distinct contributions of zonal-organized CF 

inputs to behavioral variables, in the second analysis, we systematically study the correlations between the 

firing rate of neurons in all eight cerebellar zones with 9 reinforcement-learning and sensorimotor-control 

variables by partial least-squares regression (PLS regression). PLS was necessary because reward and 

sensorimotor variables are considerably correlated with each other and we need to find meaningful 

correlations under this difficult situation of multicollinearity. PLS revealed relatively moderate zonal 

distributions of different variables, probably because each zone and even each neuron contain multiple 

functional components as demonstrated by previous studies (Markanday et al., 2021; Ikezoe et al., 2022; 

Hoang et al., 2022). Therefore, in the third analysis, we decomposed spiking activity into four tensor-

components (TCs) by tensor component analysis (TCA) and then examined functional representations of 

each TC at a trial basis. First, these three analyses utilized distinct CF firings (mean firing rate in [0, 0.5] s 

and [-0.5, 2] s for the first two analyses, respectively, and precise spike timings in [-0.5, 2] s for the third 

one). Second, they started from selective (three lateral zones) and proceeded to more comprehensive (eight 

zones and functionally-organized CFs). Third, they started from a simple method (linear regression) and 

proceeded to sophisticated (PLS and sparse CCA) methods. However, the results were very consistent. We 

found that TC1 neurons, distributed most densely in 6+, were positively correlated with reward R and 

reward prediction Q (Figs 3 and 5B). By contrast, TC2 neurons in zones 6- and 5- were negatively correlated 

with reward prediction error 𝛿𝑄 (Figs 2BD, 3 and 5C). TC3 neurons in medial zones were positively 

correlated with reward R and licking in reward delivery period (Figs 3 and 5D). Finally, TC4 neurons, 

distributed most densely in 6-, were negatively correlated with reward R and early lick following the No-
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go cues (Figs 3 and 5E). Note that we did not include the reward-penalty R-P into regression analyses due 

to extremely high correlations of this variable with other reward-related ones (e.g., correlations between R-

P vs. 𝛿𝑄 and R-P vs. R were 0.94 and 0.91, respectively, because we have the equation 𝛿𝑄= R-P - Q). Still, 

the aforementioned findings remained unchanged even when R-P was included (Fig S2). 

 

Notably, these results were also in good agreement with our recent work. In Hoang et al. (2022), we found 

that TC1-4 corresponds to timing control of the first lick, cognitive error signals, reward-related signals and 

action inhibition, respectively. Here, we showed that TC2 were negatively correlated with reward prediction 

error 𝛿𝑄 and thus cognitive error signals can be computed as sign-reversed reward prediction errors by 

reinforcement learning algorithms. That is, during learning, cognitive error signals decrease due to an 

increase (with the same magnitude) of negative reward prediction error. Similarly, in the previous study, 

we showed that TC4 neurons inhibit unwarranted licks specific to the No-go cue, which was further 

confirmed by sparse CCA showing negative correlation of TC4 with No-go ✕ ELick. The negative 

correlations of TC4 with reward R and reward prediction Q can be explained that R and Q for No-go cues 

were less than the average level and decreased during learning, while TC4 activity was increased (Fig S3). 

For TC3, its correlations with reward R and reward lick were supported by both of our studies. The only 

difference between the two studies is that Hoang et al. (2022) showed that synchronized spikes of TC1 

neurons within [0, 0.5] sec were positively correlated with precise timing of the first lick in HIT trials, but 

such a correlation cannot be found in this study. There are two possible reasons for this inconsistency. First, 

in this study, we investigated the correlations in all cue-response conditions and not specific for HIT trials, 

while our previous study examined only HIT trials for TC1. Second, we did not utilize synchronization of 

CF responses in this study, which has been shown to be important for timing control (Welsh et al., 1995; 

Tsutsumi et al., 2020; Wagner et al., 2021), while our previous study examined only synchronized spikes. 

Because R and Q for Go cues were higher than the average level and increased during learning, positive 
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correlations of TC1 with these two reward-related variables are expected due to an increase of TC1 activity 

(Fig S3).    

 

We also attempted to elucidate the involvement of CF response in cue cognition and motor-related functions 

separately by introducing the auditory cue variable (Cue=1 for Go and Cue=0 for No-go cues) independent 

of motor-related variables (Fig S4). While the results of PLS regression for zonal activity were similar (Fig 

S4A), some notable insights were revealed by sparse CCA of TC activities (Fig S4B). First, negative 

correlation of TC4 with early lick following No-go cues was significantly weakened, and instead it showed 

a large negative correlation with auditory cue. This suggests that TC4 neurons conveyed motor commands 

for suppression of early licks for No-go cue, but they were not general motor commands irrespective of 

auditory cues, but specific motor commands only to No-go cue. Consequently, TC2 and TC4 neurons may 

altogether construct an actor of the reinforcement learning algorithm for the No-go cue, but not an actor for 

both Go and No-go cues. Second, while TC1 and TC3 were both positively correlated with reward R, their 

low and high positive correlations with the auditory cue, respectively, suggested that TC1 neurons were 

related only to reward and TC3 neurons may be related to motor control and sensory feedback of reward 

licks as shown in Hoang et al. (2022). Finally, strong and negative correlation of TC2 with reward prediction 

error 𝛿𝑄 was retained. One important question to be answered in the future works is how TC2 neurons 

compute reward prediction error when TC2 activity was within 0.2 seconds (Fig S3) but rewards were only 

delivered between 0.5 and 2 seconds after the cue onset? By an observation that TC2 activity started 

increasing before the cue onset in FA trials (Fig. S3), we postulated that internal forward models (Wolpert 

et al., 1998; Kawato 1999), which may consist of a loop network of cerebral cortex, basal ganglia and the 

cerebellum (Bostan and Strick, 2018; Wagner and Luo, 2020; Watabe-Uchida et al., 2017; Kostadinov and 

Häusser, 2022), could be employed to compute the reward prediction error before actual rewards arrive.  

  

CFs have been shown to be associated not only with sensorimotor variables but also a wide range of reward 

contingencies, suggesting that the cerebellum is involved in reinforcement learning of various tasks 
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(Wagner and Luo, 2020; Kostadinov and Häusser, 2022). However, previous studies could not indicate the 

algorithms (e.g. how the reward variables are computed) implemented in reinforcement learning. More 

importantly, it remains unclear how these reward-related CF inputs contribute to acquisition of behavior 

over the course of learning. To tackle these issues, we formally utilized the Q-learning algorithm to estimate 

reward variables from licking behavior of mice that underwent Go/No-go tasks for the following reason. 

From a computational view-point, we have a clear dichotomy about value functions, that is, expectation of 

summation of discounted future rewards as follows. The state value function V(s) is dependent only on the 

state s, while the state-action value function Q(s,a) is dependent both on the state s and action a. The two-

photon Ca2+ imaging data clearly showed state-action value function rather than state value function 

because the imaging data is very different between different actions (lick) for HIT vs MISS or FA vs CR 

(Fig 1D). Thus we utilized a state-action Q value function to estimate the expected reward starting from a 

particular state and taking a particular action. For action policy, we used the softmax function for selecting 

actions based on the learned Q values. This simple Q-learning model with only five hyper-parameters fitted 

the licking behavior of individual mice very well (Figs 1CD), statistically better than the models with a 

reduced number of hyper-parameters (Fig S5) indicating that all these five hyper-parameters are important, 

at least for the present Go/No-go learning task. Interestingly, the estimated hyper-parameters revealed that 

each animal learns the task in a unique way (i.e., difference in learning rate, penalty value and initial Q 

values across animals, Fig 1E) while utilizing its own strategy (temperature) for optimally getting the 

rewards. 

 

One of the technical advances of our study is to utilize tensor component analysis (TCA) as a generative 

model of spiking activity in single trials, under a challenging condition that single CFs multiplex various 

information (Markanday et al. 2021; Ikezoe et al., 2022; Hoang et al., 2022). Unsupervised statistical 

methods like TCA are effective in decomposing spiking activity into biologically-meaningful components, 

but they are sensitive to noise and thus not suitable for single trials. Therefore, we applied TCA for PSTH 

of CF firings to diminish the trial-by-trial variability as well as to find the low-dimensional tensor 
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components (TCs) underlying spiking dynamics. The temporal profiles of TCs were then used for filtering 

spike activity in each trial (Fig 4B). This process resulted in TC scores that reliably captures spiking 

dynamics with respect to the four TCs found by TCA (Figs 4CDE).  

 

Theoretically, the most exciting finding of this study is that TC2 was strongly and negatively correlated 

with reward prediction error 𝛿𝑄, and at the same time, it was positively correlated with early lick following 

No-go cues (Fig 5A). Note that TC2 firings in the FA condition decreased dramatically as learning proceeds 

(Fig S3). This result supports the integration of internal model theory and reinforcement learning in the 

cerebellum. According to this hypothesis, TC2 neurons acquire necessary motor commands from reward 

prediction error conveyed by climbing fibers as follows. In the beginning of learning, negative reward 

prediction error is large in amplitude, thus CFs of TC2 neurons are strongly activated. If we assume that 

SSs of those neurons are also activated in 0-500 ms with a positive baseline firing rate of 50-100 Hz, many 

erroneous (unwarranted) licks are generated within this temporal window. Following co-activation of 

parallel fiber and climbing fiber inputs, long-term depression (LTD) at the parallel-fiber-to-Purkinje-cell 

synapses occurs, and consequently, the SS modulation turns negative and becomes an approximate mirror 

image of CS modulation (similar phenomena were simulated by Yamamoto et al., 2002 in connection to 

adaptive control of ocular following responses). At later stages of learning, negative reward prediction error 

is close to zero, CFs are only spontaneous, thus SSs of these neurons contribute to suppression of the lick 

following No-go cues. According to this mechanism, TC2 may turn into TC4 as also suggested in Hoang 

et al. (2022). Future simultaneous recordings of SSs and CSs may reveal neural mechanisms of these 

neurons. In conclusion, our paper proposed a computational framework - combining Q-learning model, 

hyper-resolution spike detection algorithm and tensor component analysis - for elucidating reward 

processing in the cerebellum and we found that the climbing fibers in the lateral Crus II encode negative 

reward prediction error in reinforcement learning algorithm.    
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Methods 

Q-learning model  

We adopted a Q-learning model, a reinforcement learning algorithm, to model the licking behavior of mice 

in the Go/No-go experiment. The algorithm works by learning a state-action value function, commonly 

referred to as the Q-function. The Q-function is a mapping from a state-action pair to a scalar value that 

represents the expected reward for taking a particular action in a particular state. The Q-function is updated 

over time based on the observed rewards and transitions to new states. 

In the Go/No-go auditory discrimination task, the Q-function of a state s (s = Go / No-go cue) and an action 

a (a = Lick / No-lick) was updated at the trial t as follows 

𝛿𝑄t = R-Pt - Qt 

Qt+1 = Qt + 𝛼 ✕ 𝛿𝑄t 

where 𝛿𝑄 is the reward prediction error, 𝛼 is the learning rate and R-P is the reward-penalty function 

R-P = 1 for s = Go, a = Lick (HIT) 

R-P =  -𝜉 for s = No-go, a = Lick (FA) 

R-P = 0, otherwise (CR and MISS) 

  

The probability of selecting a given action a in state s is determined by the softmax function comparing the 

Q-function values of an action to all others: 

𝑃𝑟𝑜𝑏(𝑠, 𝑎) =
𝑒𝑥𝑝 {𝑄(𝑠, 𝑎)/𝜏}

∑ 𝑒𝑥𝑝 {𝑄(𝑠, 𝑎)/𝜏}𝑎
 

where 𝜏 is the temperature parameter, representing the trade-off between exploitation and exploration. 

Because mice underwent pre-training sessions of 3 days, during which they were rewarded by licking after 

1 second of both cues, initial Q values for Go and No-go cues should be positive:  Q0(s=Go, a=Lick) = q1 

and Q0(s=No-go, a=Lick) = q2. In total, the Q-learning model contains 5 hyper-parameters: learning rate 𝛼 

(range, 0.001 ≤ 𝛼 ≤ 0.1), 𝜉 (0 ≤ 𝜉 ≤ 1), temperature 𝜏 (0.01 ≤ 𝜏 ≤ 0.5), initial Q values for Go and No-go 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.13.532374doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532374
http://creativecommons.org/licenses/by-nc-nd/4.0/


cues, q1 and q2 (0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1). We estimated these parameters for individual animals by maximizing 

the likelihood defined as the sum of Prob(s,a) for all trials.   

 

It is important to emphasize that we fitted the Q-learning model to behavioral data at a trial basis with the 

trials from different sessions concatenated. To evaluate the fitting, for each session, we computed the 

fraction correct for Go cues (number of HIT trials / total number of Go trials) and the fraction incorrect for 

No-go cues (number of FA trials / total number of No-go trials) from the data, while the probability 

Prob(s,a) of the last HIT and FA trials were selected from the model (Figs 1CD). The coefficient of 

determination (R2) was calculated to measure goodness-of-fit between the data and model probabilities 

across sessions of individual animals. 

    

𝑅2 = 1 −  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

𝑆𝑆𝑟𝑒𝑠 = ∑(ℎ𝑖 − 𝑓𝑖)2

𝑖

 

𝑆𝑆𝑡𝑜𝑡 = ∑(ℎ𝑖 − ℎ̅)2

𝑖

 

, where ℎ𝑖  and 𝑓𝑖 are the probabilities of the data and the model at the i-th session, respectively, and ℎ̅ is the 

mean of the data probability across sessions.  

 

Estimation of CF firing activity from two-photon recordings  

Ca signals in Purkinje cell dendrites were evaluated for regions-of-interest (ROIs) of the two-photon images 

extracted by Suite2p software and manually selected. Spike trains were reconstructed for 6,445 Purkinje 

cells sampled in the 17 mice, using hyperacuity software (HA_time, Hoang et al. 2020) that detected spike 

activities for Ca signals of two-photon imaging with a temporal resolution of 100 Hz (see Hoang et al. 2022 

for details).  
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CF response to cue stimulus  

For evaluating the CF response of a single neuron to the cue stimulus, we constructed the peri-stimulus 

time histogram (PSTH) of CF firings in [-0.5, 2] s with a time bin of 50 ms for the four cue-response 

conditions. They include HIT, FA, CR, or MISS, according to licking behavior within a response period of 

1 s to the two cues, i.e., correct lick in response to the go cue, unwarranted lick in response to the No-go 

cue, correct response rejection to the No-go cue, or response failure to the Go cue, respectively. Each PSTH 

was subtracted from its baseline activity, defined as the mean value of the firing rate in the range of [-2, -

1] s before cue onset.  

 

Partial least-squares regression analysis 

We aimed at revealing correlations between zonal activity and behavior variables at a single trial basis (Fig 

2). For each trial, the neuronal activity was calculated as the mean firing rate in [-0.5, 2] s after cue onset 

of the neurons in the same Ald-C zone. Behavior variables include physical reward R (R = 1 for HIT trials, 

= 0 otherwise), Q, 𝛿𝑄, number of licks in the early period of 0-0.5 s for Go and No-go cues (Go ✕ ELick 

and No-go ✕ ELick), number of licks in the reward period (0.5 - 2 s after cue, Go ✕ RLick and No-go ✕ 

RLick) and number of licks in the late period (2 - 4 s after cue, Go ✕ LLick and No-go ✕ LLick).  

 

We conducted partial least-squares (PLS) regression to resolve the multi-collinearity of behavior variables, 

e.g. between R, Q and 𝛿𝑄. PLS regression searches for a set of low-dimensional components that performs 

a simultaneous decomposition of dependent and explanatory variables with the constraint that these 

components explain as much as possible the covariance between the variables. The VIP (Variable 

Importance in Projection) score is a measure of the importance of each predictor variable in a PLS 

regression model, with higher scores indicating greater importance. The VIP score for the j-th variable is 

given as:  
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𝑉𝐼𝑃𝑗 = √
∑ 𝑤𝑗𝑓

2 × 𝑆𝑆𝑌𝑓 × 𝐽𝐹
𝑓=1

𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙 × 𝐹
 

, where 𝑤𝑗𝑓 is the weight for j-th variable and f-th PLS component, 𝑆𝑆𝑌𝑓 is the sum of squares of explained 

variance for the f-th PLS component and J number of explanatory variables (J=9). 𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙  is the total sum 

of squares explained for the dependent variable, and F is the total number of PLS components. In our 

analysis, the number of PLS components was optimized by 10-fold cross-validation.  

 

Note that the VIP score does not provide sign information (positive or negative) of correlations between 

explanatory and dependent variables. Although there was no known threshold for a systematic evaluation, 

VIP score > 1 was typically used as an indicator for a variable to be considered significant. PLS was 

conducted using the MATLAB functions plsregress.  

 

 

Tensor component analysis 

Let xntk denote the PSTH of neuron n at time step t within cue-response condition k. TCA yields the 

decomposition 

𝑥𝑛𝑡𝑘 ≈ �̂�𝑛𝑡𝑘 = ∑ 𝜆𝑟𝑤𝑛
𝑟𝑏𝑡

𝑟𝑎𝑘
𝑟

𝑅

𝑟=1

 

, where R is the number of tensor components, 𝑤𝑛
𝑟, 𝑏𝑡

𝑟 and 𝑎𝑘
𝑟  are the coefficients of the neuron, temporal, 

and response condition factors, respectively. Those coefficients were scaled to be unit length with the 

rescaling value 𝜆𝑟 for each component r. We introduced a non-negative constraint of those coefficients 

(𝑤𝑛
𝑟 ≥ 0, 𝑏𝑡

𝑟 ≥ 0 and 𝑎𝑘
𝑟 ≥ 0 for all r, n, t and k). In the previous study, we optimized the number of 

components R = 4 for which the solutions were most stable and the fitting scores were high (Hoang et al., 

2022).  
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Computation of tensor component score for a single trial 

TCA was efficient for decomposing PSTHs into biologically-meaningful components (Hoang et al. 2022), 

but for systematic analysis of associations of CF responses and variables at a trial basis, it is crucial to 

estimate activity of such components for individual neurons in a single trial. Note that TCA was carried out 

for PSTHs computed over multiple trials within a session, but we need some firing index for each trial for 

Q-learning analysis. For that purpose, we proposed a novel approach to utilize the components decomposed 

by TCA as generative models of CF firings. 

 

The tensor-based activity of the i-th neuron in the j-th trial (corresponding to the cue-response condition c) 

with respect to the component r-th (r = 1, .. , 4) was evaluated as:  

𝑦𝑖,𝑗
𝑟 = 𝑤𝑖

𝑟 × 𝑎𝑐
𝑟 × ∑ 𝛿(𝑡 − 𝑡𝑠)𝑏𝑡

𝑟𝑆
𝑠 =1 .    

, where ∑ 𝛿(𝑡 − 𝑡𝑠)𝑆
𝑠 =1  is the firings sampled from [-0.5, 2] s after cue onset as the summation of Dirac 

delta functions 𝛿. 

 

For the j-th trial, the TC score of the r-th component was calculated as the averaged 𝑦𝑖,𝑗
𝑟  across all neurons 

in the same recording session. As a result, each trial has four TC scores corresponding to the four TCs.  

𝑇𝐶 𝑠𝑐𝑜𝑟𝑒𝑗
𝑟 =

1

𝑁
∑ 𝑦𝑖,𝑗

𝑟

𝑁

𝑖=1

 

 

Sparse canonical correlation analysis 

Because CFs may multiplex different information, we conducted sparse Canonical Correlation Analysis 

(sCCA) for analyzing the relationship between TC scores and behavior variables. The goal of sCCA is to 

find a set of linear combinations (known as "canonical variates") of the variables in each set, such that the 

correlation between the two sets of canonical variates is maximized. The sCCA includes a sparsity 

constraint, which promotes solutions in which only a small number of variables are considered in the 
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calculation of the canonical variates. This can result in more interpretable and biologically relevant 

solutions, as it reduces the amount of noise in the data. 

 

In our analysis, sCCA was conducted using the PMA package of R, with a LASSO penalty applied to 

enforce sparsity. L1 bounds were set 0.4 and 0.6 for TC scores and behavior variables, respectively (larger 

L1 bound corresponds to less penalization). The explanatory and dependent variables were standardized to 

have mean zero and standard deviation 1 before performing the analysis. The number of canonical variables 

was 4. The resulting coefficient of TC scores was either 1 or -1. For easier interpretations, coefficient 

vectors of behavior variables (reported in Fig 5A) were re-signed so that the coefficient of TC scores was 

all 1.    

 

Statistics 

All statistical analyses were performed using MATLAB software. Unless otherwise stated, data are 

presented as means ± SD. For evaluation of correlations between neuronal response and single behavior 

variables (Fig 2B-D and Fig 5B-E), we fitted a linear mixed-effects model with fixed effect for behavior 

variables and mouse index as random intercept. The analysis was conducted using MATLAB function 

fitlme, with the slope and its significance p-value were reported. Significance level: n.s, p > 0.05; * p < 

0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
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Supplemental Figures 

 

 

 

Figure S1: PLSR of TC activity and behavior variables. Color convention is the same as Figure 3. 
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Figure S2: PLS regression for zonal activity (A) and sparse CCA for TC1-4 scores (B) with an additional 

reward-penalty R-P variable. Color convention is the same as Figure 3 with a new dark blue column for 

R-P. 
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Figure S3: At each learning stage, we first sampled 300 neurons whose coefficients were highest for each 

of the tensor components, TC1-4, then excluded those that appeared in at least two samples (e.g TC1 and 

TC3). This figure plots PSTHs in the four cue-response conditions of selected neurons for the four tensor 

components. Blue, green and red traces are for 1st, 2nd and 3rd learning stages, respectively.  
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Figure S4: PLS regression for zonal activity (A) and sparse CCA for TC1-4 scores (B) with auditory cue 

and motor variables independent. In these analyses, the auditory cue (Cue=1 for Go and Cue=0 for No-go 

cues) was made independent from the motor (licking) variables, resulting in a total of 7 exploratory 

variables (Cue, R, Q, 𝛿𝑄, ELick, RLick, and LLick). Color convention is the same as Figure 3 with a new 

black column corresponding to the auditory cue.       
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Figure S5: BIC score, estimated for 17 mice, of the five Q-learning models with different numbers of hyper-

parameters. The total BIC score was 21,235; 21,291; 21,414; 21,532 and 69,325 for Model #1-5, 

respectively. 
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