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A B S T R A C T   

Theories of consciousness abound. However, it is difficult to arbitrate reliably among competing theories because 
they target different levels of neural and cognitive processing or anatomical loci, and only some were developed 
with computational models in mind. In particular, theories of consciousness need to fully address the three levels 
of understanding of the brain proposed by David Marr: computational theory, algorithms and hardware. Most 
major theories refer to only one or two levels, often indirectly. The cognitive reality monitoring network (CRMN) 
model is derived from computational theories of mixture-of-experts architecture, hierarchical reinforcement 
learning and generative/inference computing modules, addressing all three levels of understanding. A central 
feature of the CRMN is the mapping of a gating network onto the prefrontal cortex, making it a prime coding 
circuit involved in monitoring the accuracy of one’s mental states and distinguishing them from external reality. 
Because the CRMN builds on the hierarchical and layer structure of the cerebral cortex, it may connect research 
and findings across species, further enabling concrete computational models of consciousness with new, 
explicitly testable hypotheses. In sum, we discuss how the CRMN model can help further our understanding of 
the nature and function of consciousness.   

1. Introduction 

The scientific study and understanding of consciousness is simulta-
neously a young research field and a long-standing philosophical 
ambition. There are many theories of consciousness [Seth & Bayne 
provide an excellent overview (Seth and Bayne, 2022)], which differ 
from one another at the level of definitions, the focus on global versus 
local scales, and the underlying neural circuits. Recent work has sought 
to define mechanisms and consensus for studying consciousness in 
biological and artificial systems (Butlin et al., 2023). 

When we compare consciousness studies with other cognitive 
neuroscience fields, e.g. motor control, visual perception, memory, 
attention, and perceptual learning, we hit upon three significant dif-
ferences in research. 

The first is related to the definition of consciousness. Providing a 
clear definition of higher cognitive functions such as attention could be 
as difficult as for consciousness, yet there is consensus on attention 
(Lindsay, 2020; Petersen and Posner, 2012), and we can run animal 
experiments on attention with neural recordings and causal methods 
(Norman et al., 2021; Noudoost and Moore, 2011). It has proven 

challenging to run animal experiments on consciousness with the same 
level of rigour as with other cognitive functions. This difficulty primarily 
arises because consciousness has been classically described in relation to 
human subjective experience, and it is therefore hard to analyse in 
objective experiments applicable to other animals. We do not possess 
common experimental paradigms directly targeting consciousness in 
humans and experimental animals (but see (Birch et al., 2022)). 

The second difficulty may come from failing to explicitly address 
David Marr’s first level (Marr, 1982), the computational theory. What is 
consciousness for, how can its computation be made possible, and what 
are its inputs and outputs? To some extent, we can answer these ques-
tions for most brain functions, including motor control, visual percep-
tion, memory, attention, and perceptual learning. Although some 
theories suggest specific computations (see next section, Definitions and 
theories of consciousness), we are still missing a computational-level un-
derstanding of consciousness. 

Finally, the third aspect concerns the computational models of David 
Marr’s second and third levels. What are the algorithms, why could they 
be efficient with the computation aimed, and how are algorithms 
implemented in neural substrates? Some theories hint at possible 
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algorithms or neural circuits as hardware. Global neural ignition across 
the brain (Dehaene et al., 1998; Mashour et al., 2020), local recurrrent 
computations in sensory circuits (Lamme, 2006, 2010), and 
self-monitoring of internal representations (Lau et al., 2022; Lau and 
Rosenthal, 2011), but remain relatively vague because they have no 
explicit link to the first level of understanding; the computational the-
ory. Integrated Information Theory (IIT) instead has the form of a 
mathematical theory (Oizumi et al., 2014; Tononi, 2004) but is far 
removed from David Marr’s three levels of understanding. IIT aims to 
achieve something similar to the Hamiltonian physics mechanics by the 
first principle. If it is valid, that will be transformative, but there have 
also been severe doubts about IIT, including invalid axioms, ad-hoc in-
terpretations and changing assumptions (Bayne, 2018; Doerig et al., 
2019; Lau, 2023; Morch, 2019). 

The cognitive reality monitoring network (CRMN) is different from 
these previous theories of consciousness in its origins. It is a computa-
tional model of neural processing mapping to a hierarchical-modular 
reinforcement learning architecture (Kawato and Cortese, 2021). 
Thus, the computational theory of CRMN is explicit with respect to 
David Marr’s first level: to maximise ecological fitness through rein-
forcement learning (i.e., maximising some expected reward signal1). 
The CRMN algorithm is a hierarchical and modular reinforcement 
learning algorithm with multiple paired generative and inference 
models. CRMN solves sensory and motor control, perceptual processing, 
objective maximisation, and metacognition as subordinate functions. At 
the hardware level, CRMN allocates paired generative and inference 
models to the layer structure of the cerebral cortex, reward prediction 
errors to the basal ganglia, and gains switching and cognitive reality 
monitoring to the PFC. A unique feature of CRMN is that consciousness 
was not the main objective of computational modelling. Metacognition 
and consciousness result from gating in hierarchical-modular rein-
forcement learning. That is, they both describe an inherent process of 
the model. As such, there is an explicit function for consciousness and 
metacognition in behavioural terms. In this sense, CRMN sits at the 
opposite extreme of IIT. 

In the following sections, we will examine the current landscape of 
consciousness theories and how they map onto different levels of 
ontological representation. We will analyse the CRMN and its building 
blocks, providing an overview of its computations and how they can 
help our understanding of consciousness by linking it to other major 
consciousness theories. Within the CRMN framework, we will define the 
prerequisites for consciousness, such as a neural system with hierarchy, 
modularity, and information compression with representations chained 
over time. For an agent ‘acting’ in a dynamic, complex, non-stationary 
environment, consciousness as a coherent evolution in time of low- 
dimensional representations can provide an intrinsic tool for fast 
adaptive behaviour. Finally, we will discuss how the CRMN can be in-
tegrated into consciousness studies and help bridge the thorny question 
of how we can study theories of consciousness in animal models. 

2. Definitions and theories of consciousness 

What is consciousness, and how do we define it? Typically, we 
equate consciousness with subjective experience. That is, a system 
(human, animal, or otherwise artificial) has a conscious experience 
when there is “something it is like” for the system to be the subject of 
that experience (Butlin et al., 2023; Nagel, 1974). 

The four main theories of consciousness (Michel et al., 2018) are the 
global neuronal workspace theory (GNW), local recurrent processing 
theory (RPT), higher-order theory (HOT), and integrated information 

theory (IIT). There are dozens more in practice, even though not all are 
as well known (Seth and Bayne, 2022). Some theories are widely 
accepted and seen as strong candidates to explain consciousness by the 
broader neuroscientific community (e.g., GNW, LR), while other the-
ories are better known by the general public (e.g., IIT) and seen as more 
controversial in the field (Fleming et al., 2023; Lau, 2023; Michel et al., 
2018). 

We briefly highlight the key features of the four main theories.  
Table 1 refers to these four theories and the CRMN, introducing the 
specifics for each of Marr’s three levels. 

• GNW: global neuronal workspace (globalist view). Equates con-
sciousness with conscious access, broadcasting information across 
cortical areas (Dehaene et al., 1998; Mashour et al., 2020). For the 
GNW theory, the hallmark of consciousness is a “global ignition 
phenomenon, the sudden, coherent, and exclusive activation of a 
subset of workspace neurons coding for the current conscious con-
tent” (quoted from Mashour et al., 2020). For consciousness to arise, 
the theory proposes that neural information processing has to travel 
from sensory areas to prefrontal cortices and reverberate across the 
brain’s neural networks. 

• RPT: recurrent processing theory (localist view). First-order repre-
sentations generated through local recurrency are sufficient for 
consciousness (Lamme, 2010). Recurrent connections within and 
between sensory processing areas form the basis of conscious expe-
rience. Feedforward sweeps in recurrent networks will not be suffi-
cient for consciousness, although they may be necessary.  

• HOT: higher-order theory of consciousness (meta-representations). 
More than mere first-order representations are required for con-
sciousness to arise, for a first-order sensory representation may 
happen nonconsciously and determine behavioural responses but is 

Table 1 
CRMN, mainstream theories of consciousness and how they map onto Marr’s 
three levels of understanding. CRMN: Cognitive reality monitoring network, 
GNW: Global neuronal workspace theory, RPT: Recurrent processing theory, 
HOT: Higher-order theory, IIT: Integrated information theory. * Note that while 
both GNW and HOT have an entry in the computational theory field, neither 
strictly describes the computational theory.   

Computational 
theory 

Representation & 
algorithm 

Hardware 
implementation 

CRMN Maximise ecological 
fitness by reward- 
guided sensory-motor 
learning. For fast 
learning from small 
samples, dimension 
reduction is used 
through a divide-and- 
conquer strategy with 
hierarchy and 
modularity. 

Fine to coarse 
representation 
hierarchy connected 
by generative/ 
inference model pairs. 
Hierarchical and 
modular 
reinforcement 
learning algorithm 
based on 
representation 
hierarchy and 
modularity. 

Generative and 
inference models are 
implemented as 
feedback and 
feedforward 
connections within 
cortical layer circuits. 
Basal ganglia as a 
reinforcement 
learning hub, and PFC 
for selection and 
switching of modules. 

GNW Solving the frame 
problem, i.e., * 

Coherent activation of 
workspace neurons: 
broadcasting of 
information across 
cortical areas 

Connections between 
sensory areas to 
prefrontal cortices 

RPT - First-order 
representations 
through local 
recurrency 

Recurrent connections 
within local networks 

HOT distinguish reliable 
from unreliable 
mental 
representations for 
belief formation and 
future behaviour * 

Second-order or meta 
representation in PFC 
and first order 
representations in the 
lower areas are 
matched 

Lower areas and PFC, 
and neural 
connections between 
them 

IIT - - -  

1 By ‘expected reward’ here we do not mean simply a rewarding outcome. 
Rather, it is intended as the basis function of reinforcement learning, i.e. 
computational prediction function, with reward being the outcome conditional 
on the objective. 
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not enough for phenomenal conscious experience. A second-order 
representation, or ‘meta-representation’, is necessary. Conscious-
ness requires inner awareness from monitoring first-order states 
(Brown et al., 2019; Lau et al., 2022; Lau and Rosenthal, 2011). 
Several versions of the theory differ based on the nature of these 
second-order representations and the connection between first and 
second-order representations.  

• IIT: integrated information theory (theoretical-mathematical view). 
IIT identifies consciousness with a causal structure. Based on three 
axioms, IIT proposes that we can analytically calculate a measure (of 
integrated information) for any system from its causal structure. This 
measure directly reflects the ‘amount’ of consciousness in the system. 
IIT purports that recurrent systems are always conscious, while 
feedforward systems are never (Oizumi et al., 2014; Tononi, 2004). 

These summary definitions indicate that these theories do not 
necessarily address or formalise an overarching computational problem. 
Instead, they are concerned with explaining the nature of consciousness 
or the minimal set of neural underpinnings. Thus, each theory takes a 
different approach or targets different levels of Marr’s three levels of 
understanding of the brain (Table 1). To be fair, several researchers 
mention interesting characteristics of the computational aspects of GNW 
and HOT. In particular, Baars & Shanahan have argued that a global 
workspace architecture solves the frame problem in artificial intelli-
gence (Shanahan and Baars, 2005). In the same way, for HOT, some 
researchers propose a computational-level goal: distinguish reliable 
from unreliable mental representations for belief formation and future 
behaviour (Gershman, 2019; Lau, 2019). 

Some theories offer insight into the neural hardware (sensory vs 
associative or frontal areas of the brain, whole brain networks), others 
into the algorithms (recurrence). Because of these differences and a need 
for standard definitions and computational building blocks, arbitrating 
among theories or falsifying predictions can be difficult and problem-
atic. The difficulty of arbitrating between theories lies clear in recent 
adversarial collaborations (Cogitate Consortium et al., 2023). While 
these efforts are great for the field, they face inherent problems when the 
theories tested need a robust common play level (in particular, neural 
substrate and computations/representations). 

Therefore, how can we bridge theories of consciousness and start 
validating or falsifying specific claims? One way we are advocating here 
is to use a framework that maps onto Marr’s three levels of analysis. 
Thus, to make within each theory explicit links with the computational 
theory (what computations underpin consciousness), the algorithms 
(what are the representations, what processes transform these repre-
sentations, e.g., feedback for generative models, feedforward for infer-
ence models, prediction errors), and the neural hardware (e.g., cortical 
layers, circuits, regions). 

3. The computational objective and prerequisites of 
consciousness 

What is consciousness’ function for survival? What is the input/ 
output of conscious processes? What is the mechanism for its usefulness? 
These questions directly relate to Marr’s levels of understanding in that 
they lead us to think about the underlying computational theory. 

We first suggest that consciousness is critical to creating relational 
content. That is to say, mental or neural content that is compositional 
and relational, as in an episode linking together different streams of 
information (e.g., context, actions, time, perception, etc.), combining 
sensory dimensions, cognitive processes and levels of abstraction. At its 
core, and as advocated before (Bengio, 2017; Cortese et al., 2019), 
consciousness could generate a low- or even uni-dimensional data point 
from very high-dimensional inputs. This way, over time, the brain can 
create a time series of low-dimensional data points (snapshots), amal-
gamating different sources of information into one coherent dimension. 

One thing that results from this view is the actionability of such a 

construct. In short, a time series of low-dimensional representations can 
support complex behaviours without needing nonlinear transformations 
of high-dimensional data. However, to perform efficiently, and in light 
of recent work, the brain likely operates offline and online systems to 
manipulate the low-dimensional time series. 

The online system can respond in real time to sensory information 
and the behavioural context in a changing, dynamic world. Sensori-
motor, attention and executive function networks could support such an 
online system (Vidaurre et al., 2017). Instead, the offline system can 
simulate behavioural trajectories (in the past or future) for learning, 
optimal control, and adaptive strategies. Replay could be the 
neuro-computational mechanism enabling precisely this, generating 
simulations and creating connections between events, goals and con-
texts. Forward and backward replay has been shown across species, 
including pioneering work in mice and later in humans (Gupta et al., 
2010; Schapiro et al., 2018; Wang et al., 2020). The default mode 
network may play an essential function in replay (Kaefer et al., 2022). 
Off-policy reinforcement-learning simulations could depend on the 
interplay between the default mode network and PFC. VmPFC is prob-
ably the gating network for this offline system, and DMN is the main 
computing body. 

For the online and offline systems to interact efficiently, they would 
need a neural and representational subspace with greatly reduced in-
formation content (with very few dimensions). Consciousness could be 
the key. In short, consciousness, by creating low-dimensional time series 
for the coherent evolution in time of internal representations, may thus 
generate the abstract subspace for offline and online systems to coop-
erate smoothly. Note that extreme dimension reduction can be achieved 
through symbolic representations, but the CRMN is agnostic. In the 
CRMN, low dimensional representations can be symbolic or analogue in 
nature, probably depending on the content [i.e., perception probably is 
not symbolic (Beck, 2019), but other conscious contents may be]. 

At this stage, we can now summarise consciousness’ prerequisites. 
Consciousness depends on hierarchy, modularity, and information 
compression (in the extreme, uni-dimensional representations). In 
addition, a conscious agent needs to be acting in a dynamic, complex, 
non-stationary environment, which leads to creating time series 
(episodes). 

4. The architecture and computations of the Cognitive Reality 
Monitoring Network (CRMN) 

With this background, approach and goals in mind, the CRMN can 
provide a new opportunity to study and understand consciousness. 
Contrary to most theories of consciousness, the CRMN was not devel-
oped as a primary model of consciousness or to study consciousness per 
se. Instead, the CRMN stems from separate lines of research in artificial 
intelligence and computational neuroscience (Kawato and Cortese, 
2021). It was developed as a model to explain some fundamental fea-
tures of neural computations in the brain, integrating reinforcement 
learning theory and information abstraction (Fig. 1). However, meta-
cognition and consciousness are naturally accounted for by the CRMN 
and play a central role in its computations, as we will discuss further 
below. 

The CRMN is a mixture-of-experts architecture (Haruno et al., 2001; 
Jacobs et al., 1991; Sugimoto et al., 2012). Each expert (i.e., functional 
modules, the computation unit of the CRMN) is a generative-inference 
(forward-inverse) model conjugate pair (Kawato et al., 1987; Kawato 
and Cortese, 2021). The forward model is a generative model of the 
rawer representation (the computation flow goes from higher to lower 
areas). In contrast, the inverse model computes an analytical, one-shot 
estimation of higher-order representations (the computation flow goes 
from lower to higher areas). The inverse model computation is fast, as it 
can be operated in a single forward sweep because it just has to 
approximate ground truth information about latent variables. The for-
ward model computation is slow, and recurrence is needed to converge 
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to a stable solution because it has to generate a complex, multidimen-
sional signal. This generative-inference model computation is related to 
predictive coding (Rao and Ballard, 1999), a mechanism proposed to 
explain neural activity’s logic in the hierarchical visual stream. In the 
predictive coding model, a prediction error between the generative 
model output and lower-level representation is filtered by the inference 
model and sent back to the higher level, which is the same algorithm as 
that of forward-inverse computation (Kawato et al., 1993). 

Note here that we are not advocating a static, fixed view of the brain 
segregated into many small neural modules independent of each other. 
Rather, these forward-inverse pairs are functional modules that overlap 
at the neural level. They are flexible enough to recruit new and forego 
old units, with connections changing based on experience and compu-
tational/behavioural demands via synaptic update mechanisms. 

The basic representations in the CRMN are the states (kik), single 
representations of sensory (or mnemonic) information, and the content 
of a single module. State representations change across modules, 
increasing in abstraction as one moves from modules closer to the sen-
sors (early sensory cortices) up to higher sensory cortices, associative 
cortices, and the prefrontal cortex. 

A fundamental computation of the CRMN is the mismatch between 
the forward and inverse conjugate pairs. Modules compute this 
mismatch at any given time. In our original formulation of the CRMN 
model, we termed this a sensory prediction error in the sensory cortex 
and a motor prediction error in the motor cortex (Kawato and Cortese, 
2021). However, this error can also be a memory prediction error arising 
from internal memory signals or a reward prediction error in the basal 
ganglia. The different prediction errors are propagated across modules 
towards the higher levels of the cortical hierarchy (i.e., the frontal part 
of the brain) to a gating network that computes general ‘cognitive’ 
prediction errors (Kawato and Cortese, 2021). We called these general 
error signals cognitive prediction errors because they incorporate 

sensory, motor, memory, and reward prediction errors. Feedback neural 
connections backpropagate error signals to lower modules, signalling 
matches or mismatches, and thus, how computations should be updated 
accordingly. Skip connections, popular in artificial neural networks 
(Emin Orhan and Pitkow, 2017; He et al., 2015), are present in the brain, 
too, in the form of direct pathways from sensory areas to PFC (Ziko-
poulos and Barbas, 2007). Direct connections can propagate mismatch 
signals to the relevant modules or gating network more rapidly. 

The CRMN incorporates hierarchical and modular reinforcement 
learning. Modules replicate along the cortical hierarchy, and abstraction 
increases as one moves from sensory areas to associative and prefrontal 
cortices (Kawato and Cortese, 2021). Early works have demonstrated 
that the basal ganglia, hosting a range of reinforcement learning pro-
cesses, are connected to cortical areas through parallel and hierarchical 
loops (Draganski et al., 2008; Graybiel et al., 1994; Haruno and Kawato, 
2006; Tanaka et al., 2004). Basal ganglia connectivity patterns reflect 
anatomical gradients across neocortical regions (Choi et al., 2018; Jarbo 
and Verstynen, 2015). Thus, it is hierarchical because different loops 
carry information at different levels of abstraction and complexity, often 
in a nested manner. Information is recombined and reduced to the few 
maximally relevant dimensions for the ongoing task/goal through se-
lection, transformation and abstraction across cortical areas. The system 
is also modular because different loops and cortical subregions map onto 
anatomically or functionally defined computational units (e.g., the 
forward-inverse models’ pair)—for instance, within the visual areas, 
different subregions process colour, motion, or shapes. Note that most 
reinforcement learning processes should be unconscious. In reinforce-
ment learning, consciousness should be necessary only when the prob-
lem is vast and involves many modalities and hierarchies. 

Finally, the CRMN maps onto GAN models [generative adversarial 
networks (Goodfellow et al., 2014)] and their extension to theories of 
consciousness (Gershman, 2019; Lau, 2019; Lau et al., 2022). GANs are a 
class of artificial neural networks composed of two sub-networks har-
bouring opposing goals. A ‘discriminator’ network that aims to tell the 
difference between real and fake/synthetic data. Instead, a ‘generator’ 
network aims to generate the synthetic data (e.g., images) that can trick 
the discriminator into believing it is real. Based on this framework, Lau 
and Gershman (Gershman, 2019; Lau, 2019) independently proposed 
that the brain and specifically the prefrontal cortex may operate as a 
discriminator, i.e., continuously comparing and discriminating endog-
enously generated neural activity against neural activity triggered by 
external stimuli. In this view, consciousness emerges if the prefrontal 
discriminator judges the first-order representation as “real". These ideas 
are tightly related to the perceptual reality monitoring theory (Simons 
et al., 2017). Conscious perception occurs if there is a relevant 
high-order representation with the content that a particular first-order 
perceptual representation is a reliable reflection of the external world. 
In terms of consciousness, this means the gating network harbours a 
re-representation in frontal areas—within the gating network, of a 
maximally abstract representation of a sensory, motor or memory input. 

5. How consciousness and metacognition map to the CRMN 

While prediction errors per se do not directly relate to consciousness, 
it is the computation by the CRMN gating network on the prediction 
errors that should determine the content of consciousness. The gating 
network computes a responsibility signal λik as a softmax of the cognitive 
prediction error for each module and hierarchy (Kawato and Cortese, 
2021). Responsibility signal λik represents the local strength of the in-
ternal evidence (i.e., the matching of prediction and incoming infor-
mation) and directly reflects the uncertainty around these 
representations. The responsibility signal priors (λ̂ik) are also locally 
implemented. Priors influence the computation of responsibility signals 
λik by providing a scaling factor. They arise from long timescales, such as 
genetics and evolution, and short timescales, such as learning and 

Fig. 1. Neural substrates and conceptual architecture of the neural CRMN. 
Various online and offline module computations related to consciousness map 
onto the brain’s separate functional and anatomical regions. The central sphere 
represents the broader PFC, with dotted lines delineating the DLPFC and the 
vmPFC. Vector lines with squares and dots represent each hierarchy within the 
CRMN. For instance, in the Sensory cortex, the somatosensory hierarchy rep-
resents the multiple levels of abstraction in computation from the lowest to the 
highest, closest to the PFC. Parallel hierarchies represent the idea of modularity. 
Parallel arrows (upward and downward) between two boxes in some spokes 
represent inference/generative computations. Consciousness results from 
computations across all modules and hierarchies gated through the PFC. 
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adaptation. Metacognition reflects the responsibility signals within 
modules’ hierarchies, thus potentially giving rise to multiple signals 
because responsibility signals are multi-dimensional. A key prediction of 
this formalisation is that one can have simultaneous metacognition of 
different contents, i.e., metacognition is expressed as a 
multi-dimensional vector of responsibility signals. In other words, 
metacognition is not a serial process but is parallel and multiple meta-
cognitive processes can operate simultaneously. If so, a behavioural 
prediction might be that subjects should be as metacognitively efficient 
(and as fast) for judging their confidence in multiple decisions (e.g., 
about several stimulus features) compared to a single decision. 

In the CRMN, consciousness instead is directly related to the entropy 
(S) computed from responsibility signals across all modules’ hierarchies, 
thus giving rise to a single, unitary construct (Fig. 1). This construct is 
the content of consciousness—i.e., qualia (Kanai and Tsuchiya, 2012), 
which is now computationally and mathematically defined. Computed 
across all modules and hierarchies, the entropy indexes whether the 
agent is conscious and possibly the level of consciousness. Low entropy 
will reflect that a given module, or a minimal set of modules, has high 
responsibility signals, and the agent will be conscious of the relevant 
modules’ content. Consciousness constantly evolves within a 
low-dimensional (unitary) content space, one dimension at a time. 
Conscious content is a weighted summation of a very small number of 
active modules with large responsibility signals. 

Binocular rivalry is a good example supporting the single content 
view of consciousness –in binocular rivalry, two different stimuli are 
projected onto the two eyes separately. The content of consciousness 
alternates from one stimulus to the other but seldom results in an actual 
merging of the two stimuli (Tong et al., 2006). Others have made a 
strong case for the unitary content of consciousness in related tasks 
(Kapoor et al., 2022). 

The case for metacognition is more challenging to test because we 
have to demonstrate that one has simultaneous metacognitive access to 
two or more information streams. The brain has related but separated 
metacognitive mechanisms for different domains, such as memory and 
visual perception (McCurdy et al., 2013; Morales et al., 2018). Thus, 
there is evidence for domain-general and domain-specific processes. The 
CRMN can naturally accommodate and expand these findings thanks to 
its hierarchical and modular architecture. Responsibility signals within a 
cortical hierarchy will give rise to a confidence/metacognition signal. 
This confidence maps to a particular domain. For, confidence about 
colour perception might differ from confidence about motion percep-
tion. At a more general level, we can have confidence/metacognition 
about perception, separated from confidence/metacognition about 
memory. The mapping here happens at a higher hierarchy level within 
the gating network. Finally, the CRMN posits a full, domain-general 
metacognitive signal, encompassing all lower, more specific, levels. A 
second prediction by the CRMN is that these multiple metacognitive 
signals should be correlated yet distinct. More specific metacognitive 
signals may exist in areas related to that domain’s computations. In 
contrast, the more general metacognitive signal centres on the gating 
network in the PFC. 

Future work should test and dissect these predictions; we highlight 
some ways forward in the section ‘future experiments’. One may wonder 
how the CRMN model accounts for sensory processing that seldom 
reaches consciousness, such as the dorsal stream in visual processing 
(Goodale and Milner, 1992). While metacognition can be about local 
representations and responsibility signals, it is still computed at the 
highest levels of the hierarchy –top layers and within the CRMN. 
Furthermore, the brain’s anatomy and cortical connections strongly 
constrain the CRMN. Because dorsal visual areas provide inputs to 
occipito-parietal areas and then directly to motor control regions, pro-
cessing in the dorsal stream can bypass the CRMN (e.g., PFC areas) and 
thus consciousness. This does not mean we cannot be conscious of, e.g. 
motion information, but it can generate meaningful behaviour without 
going through conscious states. Instead, the ventral stream is better 

connected to visual and semantic memory areas, planning and offline 
simulation (Milner, 2012), such as the hippocampus and, ultimately, the 
prefrontal cortex, with most processing thus directly reaching the 
CRMN. 

We can make several predictions concerning consciousness with the 
above definitions of the CRMN variables. 

(1) consciousness is associated with low entropy S. The consequence 
is a brain state in which specific cognitive modules are active, sensory 
information is re-represented at multiple levels of abstraction, and 
cortical-subcortical loops are active—such definition maps to the GNW 
theory and the HOT of consciousness. In short, we have information 
broadcast across selected (low entropy) hierarchies/modules and re- 
representation of states from lower to higher levels. However, a global 
broadcast is unnecessary for CRMN to display consciousness and solve 
complex RL problems efficiently. Only when the PFC selects a specific 
module and hierarchy and bidirectional communication is secured be-
tween the PFC and the selected one is sufficient in CRMN. This is one of 
the main differences between GNW and CRMN. 

(2) metacognition is distributed across cognitive modules. That is, 
metacognition is not unitary (unlike consciousness), and one can be 
metacognitively aware of more than one cognitive module/content at a 
time. In addition, this also means there is (theoretically) an entire hi-
erarchy of metacognitive processes and representations. 

(3) metacognition can exist even in the absence of consciousness 
(meta-d’ > d’) (Charles et al., 2017, 2013; Cortese et al., 2020). This 
statement might sound surprising or controversial, given that meta-
cognition intimately relates to or directly reflects conscious experience. 
There is also evidence that metacognition is "consciousness-selective", 
such that metacognitive inefficiency derives from unconscious sensory 
activity (Michel, 2022). Theoretical work with signal detection theory 
can accommodate these conflicting findings. If metacognition builds on 
decision-congruent evidence alone in a context of unequal variance, it is 
possible to obtain meta-d’ > d’ (Miyoshi and Lau, 2020). The CRMN 
assigns different computational entities, responsibility signals and their 
entropy to metacognition and consciousness separately. 

6. Connecting findings in consciousness science across species 

The absence of a firm reliance on the human subjective experience to 
explain consciousness and its explicit development over Marr’s three 
levels of understanding makes the CRMN model more flexible in its 
application and comparison across species. While most theories of 
consciousness are concerned about (or were developed around) the 
human subjective experience, other animals, too, presumably have 
conscious experiences of some form or degree (Barron and Klein, 2016; 
Frith, 2019; Gutfreund, 2017). This statement may sound obvious to 
many, but because animals cannot unequivocally report their conscious 
experiences, the quality or nature of their conscious experiences remains 
a mystery. Thus, it has proven challenging to carry out consciousness 
research with animal models [but see (Boly et al., 2013) and (Birch et al., 
2022) for fruitful overviews]. 

The primary reason is the absence of self-reports. While no-report 
paradigms (Tsuchiya et al., 2015) have partly addressed this issue 
with tasks that can be equally administered to humans and other ani-
mals (Hesse and Tsao, 2020; Kapoor et al., 2022), some have argued that 
despite their promises, no-report paradigms can be as confounded as 
standard report experiments (Block, 2019; Overgaard and Fazekas, 
2016), and in the end it still depends on how we interpret findings 
(Panagiotaropoulos et al., 2020). 

A second contentious point is that we often equate intelligence with 
consciousness. But that is a misappropriation of what consciousness 
is—pure, simple experience, the feeling of what it is like to be some-
thing. Of course, consciousness probably has meaningful functions for 
intelligence (Bengio, 2017; Cortese et al., 2019; Goyal and Bengio, 2020; 
Kawato and Cortese, 2021), and the two are (highly) correlated, but this 
need not necessarily be a fundamental requirement. 
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The CRMN can be helpful in this context. In particular, as highlighted 
in the previous section, the CRMN describes a specific set of computa-
tions. Some, such as the forward-inverse model pairs, are well estab-
lished (Haruno et al., 2001; Kawato et al., 1987; Wolpert and Kawato, 
1998); others, such as cognitive prediction errors, responsibility signals 
or concurrent metacognitive signals, will need to be explored in future 
research. Animal models will bring crucial insight. We will next discuss 
possible experimental paradigms to disentangle some of the issues. 

7. Future experiments 

Considering the CRMN and the importance of its constituting parts to 
consciousness, how can we experimentally calculate the model’s vari-
ables, especially responsibility signals and entropy, from empirical data 
(e.g., electrophysiology or neuroimaging)? There are three obstacles to 
answering this question: in general, we do not have direct access to the 
generative and inverse model pairs in the brain (except perhaps in 
specific cases, i.e. in the visual stream); we do not know the exact 
boundaries of the functional units/modules of the CRMN in the brain; 
and we do not yet possess a proper description of the function governing 
the abstraction process (e.g., from early sensory areas to associative and 
prefrontal cortices). That said, we believe it will be possible to overcome 
these difficulties by combining computational model-based analyses 
with neuroimaging. One can compute responsibility signals and entropy 
via computational models applied to multi-dimensional tasks / behav-
ioural responses. Below, we propose a few ways forward with a pro-
gramme of research experiments. 

(1) Behavioural experiments. 
Use ambiguous stimuli created as a combination of weakly coherent 

features, such as colour, motion, and size, or unimodal (one feature 
only). Participants view the ambiguous stimuli and make detection/ 
discrimination choices, confidence reports, and/or free visual awareness 
reports. In the CRMN, the spontaneous emergence of visual awareness 
for coherent multi-modal stimuli would require further computation of a 
compressed multi-dimensional representation for small entropy cases. It 
should thus differ from an unimodal detection task, which does not 
require entropy. However, to be clear, CRMN does not oppose uncon-
scious cross-modal binding (Scott et al., 2018). The CRMN nevertheless 
predicts the necessity of conscious cross-modal binding if RL problems 
are complicated and require abstract and low-dimensional RL states 
binding multiple modalities. 

(2) fMRI experiments. 
From the above behavioural experiments, we can decode PFC multi- 

voxel patterns to predict the above three factors (discrimination, 
detection, and visual awareness). We expect differences between 
unimodal detection and mixed conscious visual awareness. Computa-
tional simulations of multi-modality RL tasks by CRMN (in the simplest 
case, a mixture-of-experts RL) can calculate trial-by-trial responsibility 
signals and entropy, which we can then decode from fMRI multi-voxel 
patterns. 

(3) Decoded neurofeedback experiments. 
Building on a previous study (Knotts et al., 2019), we try to increase 

and decrease entropy (or decoded confidence) in PFC and examine the 
decrease and increase of false alarm events. Unlike the previous study, 
which simultaneously targeted PFC and V1, we expect this more tar-
geted approach (neurofeedback of PFC signals alone) to lead to apparent 
changes in false alarms. In addition, based on the hypothesis that there 
may be a common metacognitive basis for detection choices and confi-
dence reports, manipulating decoded confidence could change the in-
ternal threshold for detection. 

Finally, we could manipulate information transmission (Amano 
et al., 2016; Shibata et al., 2011) between V1 and PFC regarding 
detecting a given visual feature (e.g., motion). Using multivariate 
pattern analysis, we can measure the degree of coupling between two 
regions, conditional on a specific informational content (representation 
or likelihood thereof). We may increase false alarms and decrease the 

detection threshold in perceptual decision-making tasks by manipu-
lating information transmission. This novel experiment mixes decoded 
neurofeedback and functional connectivity neurofeedback (Cortese 
et al., 2021; Megumi et al., 2015; Shibata et al., 2011; Watanabe et al., 
2017) in its methodology, which will be interesting in and by itself. 

8. Conclusion and outstanding questions 

In this paper, we have briefly introduced the main theories of con-
sciousness, highlighting how their relative distance from a complete 
account, according to David Marr’s three levels of understanding 
(Table 1), may limit their explanatory power. We have sought to 
introduce arguments in favour of a more holistic approach that involves 
all three levels, from the computational theory (i.e., the computational 
objective of consciousness), hardware (the neural underpinnings), and 
software (the representations and algorithms). In doing so, we have 
discussed how the CRMN, a computational model of sensory, cognitive 
and learning processes in the brain, can formally account for con-
sciousness and metacognition while simultaneously fulfilling Marr’s 
three levels of understanding. 

Our description and discussion are only partial and leave several 
questions unanswered. Here, we highlight a few we deem particularly 
significant. 

Is the PFC necessary for consciousness? How can we solve the 
existing debate around PFC function in consciousness? Previous work 
has seen two main stances, with some theories ascribing a central role to 
PFC (HOT, GNW), while others less so (LR, IIT). The CRMN makes a 
strong prediction that the PFC is critical for consciousness by being the 
site of the gating network where responsibility signals converge, and 
computations over internal distributions take place. 

Can prediction errors directly cause consciousness? C.f. Jun Tani’s 
work on surprise signals and consciousness (Tani, 2016). The CRMN 
postulates that a significant mismatch between forward and inverse 
models will result in a large prediction error, leading to small re-
sponsibility signals and, thus, high entropy, meaning no conscious ac-
cess. However, a large prediction error and a specific behavioural 
demand could lead the brain to focus resources on those modules, 
resulting in converging updates that will quickly minimise the error and 
thus entropy, quickly resulting in a conscious percept. 

Can we find direct evidence for high-level re-representations (in the 
PFC) of low-level sensory coding? How would these representations 
appear? Fleming and Lau discussed this problem to some extent 
(Fleming, 2020; Lau et al., 2022). The fact that PFC neurons code sen-
sory information is now well known, as consistently reported in elec-
trophysiology experiments (Kapoor et al., 2022; Mante et al., 2013) as 
well as in humans with neuroimaging (Cortese et al., 2016; Jung et al., 
2018; Weilnhammer et al., 2021). However, how these representations 
relate to lower-level sensory representations in sensory cortices remains 
unknown. Multivariate pattern analyses linking the representation 
content in different areas, combined with dimensionality analyses, 
might help answer this question. 

Does the CRMN generalise to other biological organisms that display 
complex behaviours but have a vastly different neural system? Octo-
puses, for instance, have distributed neural systems, which are much less 
hierarchical than human or primate brains (Gray, 1970; Young, 1971). 
Yet, they appear to have many functions seen in other complex animals, 
such as two stages of sleep and even dreams (Pophale et al., 2023). While 
the CRMN builds on solid assumptions about the hierarchy of compu-
tational modules, the formulation of the model should be general 
enough to apply readily to numerous neural architectures. Future 
simulation work could establish the nature of these architectures and the 
requirements for consciousness (in computational terms, i.e., re-
sponsibility signals and entropy). 

Finally, what role does the cerebellum play? Contrary to the classical 
view of the cerebellum as solely related to motor control, more than a 
decade of work has now shown its implication in a variety of cognitive 
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processes, from attention states to reinforcement learning and social 
behaviours (Brissenden et al., 2021; Kawato et al., 2021; Pu et al., 2020; 
Sendhilnathan et al., 2020), and in particular to sequencing (Tedesco 
et al., 2011). Further, the cerebellum has been highlighted as a unique 
computing core for dimensionality control and modular reinforcement 
learning (Hoang et al., 2023a, 2023b, 2020; Rotondo et al., 2023). 

To conclude, we have discussed how the CRMN can bridge compu-
tational theory and consciousness research, linking to Marr’s three levels 
of understanding. In so doing, we provided what we hope is a new view 
on the computational objective of consciousness, its neural un-
derpinnings and future avenues of investigation. 
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